docs: refine README.md
[poolifier.git] / README.md
1 <div align="center">
2 <img src="./images/logo.png" width="340px" height="266px"/>
3 </div>
4
5 <h2 align="center">Node Thread Pool and Cluster Pool :arrow_double_up: :on:</h2>
6
7 <p align="center">
8 <a href="https://www.npmjs.com/package/poolifier">
9 <img alt="Weekly Downloads" src="https://img.shields.io/npm/dw/poolifier"></a>
10 <a href="https://github.com/poolifier/poolifier/actions/workflows/ci.yml">
11 <img alt="Actions Status" src="https://github.com/poolifier/poolifier/actions/workflows/ci.yml/badge.svg"></a>
12 <a href="https://sonarcloud.io/dashboard?id=pioardi_poolifier">
13 <img alt="Quality Gate Status" src="https://sonarcloud.io/api/project_badges/measure?project=pioardi_poolifier&metric=alert_status"></a>
14 <a href="https://sonarcloud.io/dashboard?id=pioardi_poolifier">
15 <img alt="Code Coverage" src="https://sonarcloud.io/api/project_badges/measure?project=pioardi_poolifier&metric=coverage"></a>
16 <a href="https://standardjs.com">
17 <img alt="Javascript Standard Style Guide" src="https://img.shields.io/badge/code_style-standard-brightgreen.svg"></a>
18 <a href="https://gitter.im/poolifier/community?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge">
19 <img alt="Gitter chat" src="https://badges.gitter.im/poolifier/community.svg"></a>
20 <a href="https://opencollective.com/poolifier">
21 <img alt="Open Collective" src="https://opencollective.com/poolifier/tiers/badge.svg"></a>
22 <a href="https://badgen.net/badge/Dependabot/enabled/green?icon=dependabot">
23 <img alt="Dependabot" src="https://badgen.net/badge/Dependabot/enabled/green?icon=dependabot"></a>
24 <a href="http://makeapullrequest.com">
25 <img alt="PR Welcome" src="https://img.shields.io/badge/PRs-welcome-brightgreen.svg?style=flat-square"></a>
26 <a href="https://img.shields.io/static/v1?label=dependencies&message=no%20dependencies&color=brightgreen">
27 <img alt="No dependencies" src="https://img.shields.io/static/v1?label=dependencies&message=no%20dependencies&color=brightgreen"></a>
28 </p>
29
30 ## Why Poolifier?
31
32 Poolifier is used to perform CPU intensive and I/O intensive tasks on nodejs servers, it implements worker pools using [worker-threads](https://nodejs.org/api/worker_threads.html#worker_threads_worker_threads) and cluster pools using [Node.js cluster](https://nodejs.org/api/cluster.html) modules.
33 With poolifier you can improve your **performance** and resolve problems related to the event loop.
34 Moreover you can execute your tasks using an API designed to improve the **developer experience**.
35 Please consult our [general guidelines](#general-guidance).
36
37 - Easy to use :white_check_mark:
38 - Performance [benchmarks](./benchmarks/README.md) :white_check_mark:
39 - Dynamic pool size :white_check_mark:
40 - Easy switch from a pool to another :white_check_mark:
41 - No runtime dependencies :white_check_mark:
42 - Proper async integration with node async hooks :white_check_mark:
43 - Support CommonJS, ESM, and TypeScript :white_check_mark:
44 - Support for worker-threads and cluster node modules :white_check_mark:
45 - Support sync and async tasks :white_check_mark:
46 - Tasks distribution strategies :white_check_mark:
47 - General guidance on pool choice :white_check_mark:
48 - Widely tested :white_check_mark:
49 - Error handling out of the box :white_check_mark:
50 - Active community :white_check_mark:
51 - Code quality [![Bugs](https://sonarcloud.io/api/project_badges/measure?project=pioardi_poolifier&metric=bugs)](https://sonarcloud.io/dashboard?id=pioardi_poolifier)
52 [![Code Smells](https://sonarcloud.io/api/project_badges/measure?project=pioardi_poolifier&metric=code_smells)](https://sonarcloud.io/dashboard?id=pioardi_poolifier)
53 [![Duplicated Lines (%)](https://sonarcloud.io/api/project_badges/measure?project=pioardi_poolifier&metric=duplicated_lines_density)](https://sonarcloud.io/dashboard?id=pioardi_poolifier)
54 [![Maintainability Rating](https://sonarcloud.io/api/project_badges/measure?project=pioardi_poolifier&metric=sqale_rating)](https://sonarcloud.io/dashboard?id=pioardi_poolifier)
55 [![Reliability Rating](https://sonarcloud.io/api/project_badges/measure?project=pioardi_poolifier&metric=reliability_rating)](https://sonarcloud.io/dashboard?id=pioardi_poolifier)
56 [![Technical Debt](https://sonarcloud.io/api/project_badges/measure?project=pioardi_poolifier&metric=sqale_index)](https://sonarcloud.io/dashboard?id=pioardi_poolifier)
57 - Code security [![Security Rating](https://sonarcloud.io/api/project_badges/measure?project=pioardi_poolifier&metric=security_rating)](https://sonarcloud.io/dashboard?id=pioardi_poolifier) [![Vulnerabilities](https://sonarcloud.io/api/project_badges/measure?project=pioardi_poolifier&metric=vulnerabilities)](https://sonarcloud.io/dashboard?id=pioardi_poolifier)
58
59 ## Contents
60
61 <h3 align="center">
62 <a href="#overview">Overview</a>
63 <span> · </span>
64 <a href="#installation">Installation</a>
65 <span> · </span>
66 <a href="#usage">Usage</a>
67 <span> · </span>
68 <a href="#node-versions">Node versions</a>
69 <span> · </span>
70 <a href="#api">API</a>
71 <span> · </span>
72 <a href="#general-guidance">General guidance</a>
73 <span> · </span>
74 <a href="#contribute">Contribute</a>
75 <span> · </span>
76 <a href="#team">Team</a>
77 <span> · </span>
78 <a href="#license">License</a>
79 </h3>
80
81 ## Overview
82
83 Node pool contains two [worker-threads](https://nodejs.org/api/worker_threads.html#worker_threads_worker_threads)/[cluster worker](https://nodejs.org/api/cluster.html#cluster_class_worker) pool implementations, you don't have to deal with worker-threads/cluster worker complexity.
84 The first implementation is a static worker pool, with a defined number of workers that are started at creation time and will be reused.
85 The second implementation is a dynamic worker pool with a number of worker started at creation time (these workers will be always active and reused) and other workers created when the load will increase (with an upper limit, these workers will be reused when active), the new created workers will be stopped after a configurable period of inactivity.
86 You have to implement your worker extending the ThreadWorker or ClusterWorker class.
87
88 ## Installation
89
90 ```shell
91 npm install poolifier --save
92 ```
93
94 ## Usage
95
96 You can implement a worker-threads worker in a simple way by extending the class ThreadWorker:
97
98 ```js
99 'use strict'
100 const { ThreadWorker } = require('poolifier')
101
102 function yourFunction(data) {
103 // this will be executed in the worker thread,
104 // the data will be received by using the execute method
105 return { ok: 1 }
106 }
107
108 module.exports = new ThreadWorker(yourFunction, {
109 maxInactiveTime: 60000
110 })
111 ```
112
113 Instantiate your pool based on your needs :
114
115 ```js
116 'use strict'
117 const { DynamicThreadPool, FixedThreadPool, PoolEvents } = require('poolifier')
118
119 // a fixed worker-threads pool
120 const pool = new FixedThreadPool(15, './yourWorker.js', { errorHandler: e => console.error(e), onlineHandler: () => console.log('worker is online') })
121
122 pool.emitter.on(PoolEvents.busy, () => console.log('Pool is busy'))
123
124 // or a dynamic worker-threads pool
125 const pool = new DynamicThreadPool(10, 100, './yourWorker.js', { errorHandler: e => console.error(e), onlineHandler: () => console.log('worker is online') })
126
127 pool.emitter.on(PoolEvents.full, () => console.log('Pool is full'))
128 pool.emitter.on(PoolEvents.busy, () => console.log('Pool is busy'))
129
130 // the execute method signature is the same for both implementations,
131 // so you can easy switch from one to another
132 pool
133 .execute({})
134 .then(res => {
135 console.info(res)
136 })
137 .catch(err => {
138 console.error(err)
139 })
140 ```
141
142 You can do the same with the classes ClusterWorker, FixedClusterPool and DynamicClusterPool.
143
144 **See [examples](./examples/) folder for more details (in particular if you want to use a pool with [multiple worker functions](./examples/multiFunctionExample.js))**.
145
146 Remember that workers can only send and receive structured-cloneable data.
147
148 ## Node versions
149
150 Node versions >= 16.14.x are supported.
151
152 ## [API](https://poolifier.github.io/poolifier/)
153
154 ### `PoolOptions`
155
156 An object with these properties:
157
158 - `messageHandler` (optional) - A function that will listen for message event on each worker
159 - `errorHandler` (optional) - A function that will listen for error event on each worker
160 - `onlineHandler` (optional) - A function that will listen for online event on each worker
161 - `exitHandler` (optional) - A function that will listen for exit event on each worker
162 - `workerChoiceStrategy` (optional) - The worker choice strategy to use in this pool:
163
164 - `WorkerChoiceStrategies.ROUND_ROBIN`: Submit tasks to worker in a round robin fashion
165 - `WorkerChoiceStrategies.LEAST_USED`: Submit tasks to the worker with the minimum number of executed, executing and queued tasks
166 - `WorkerChoiceStrategies.LEAST_BUSY`: Submit tasks to the worker with the minimum tasks total execution and wait time
167 - `WorkerChoiceStrategies.LEAST_ELU`: Submit tasks to the worker with the minimum event loop utilization (ELU) (experimental)
168 - `WorkerChoiceStrategies.WEIGHTED_ROUND_ROBIN`: Submit tasks to worker by using a [weighted round robin scheduling algorithm](./src/pools/selection-strategies/README.md#weighted-round-robin) based on tasks execution time
169 - `WorkerChoiceStrategies.INTERLEAVED_WEIGHTED_ROUND_ROBIN`: Submit tasks to worker by using an [interleaved weighted round robin scheduling algorithm](./src/pools/selection-strategies/README.md#interleaved-weighted-round-robin) based on tasks execution time(experimental)
170 - `WorkerChoiceStrategies.FAIR_SHARE`: Submit tasks to worker by using a [fair share scheduling algorithm](./src/pools/selection-strategies/README.md#fair-share) based on tasks execution time (the default) or ELU active time
171
172 `WorkerChoiceStrategies.WEIGHTED_ROUND_ROBIN`, `WorkerChoiceStrategies.INTERLEAVED_WEIGHTED_ROUND_ROBIN` and `WorkerChoiceStrategies.FAIR_SHARE` strategies are targeted to heavy and long tasks.
173 Default: `WorkerChoiceStrategies.ROUND_ROBIN`
174
175 - `workerChoiceStrategyOptions` (optional) - The worker choice strategy options object to use in this pool.
176 Properties:
177
178 - `measurement` (optional) - The measurement to use in worker choice strategies: `runTime`, `waitTime` or `elu`.
179 - `runTime` (optional) - Use the tasks [median](./src/pools/selection-strategies/README.md#median) runtime instead of the tasks average runtime in worker choice strategies.
180 - `waitTime` (optional) - Use the tasks [median](./src/pools/selection-strategies/README.md#median) wait time instead of the tasks average wait time in worker choice strategies.
181 - `elu` (optional) - Use the tasks [median](./src/pools/selection-strategies/README.md#median) ELU instead of the tasks average ELU in worker choice strategies.
182 - `weights` (optional) - The worker weights to use in weighted round robin worker choice strategies: `{ 0: 200, 1: 300, ..., n: 100 }`.
183
184 Default: `{ runTime: { median: false }, waitTime: { median: false }, elu: { median: false } }`
185
186 - `restartWorkerOnError` (optional) - Restart worker on uncaught error in this pool.
187 Default: `true`
188 - `enableEvents` (optional) - Events emission enablement in this pool.
189 Default: `true`
190 - `enableTasksQueue` (optional) - Tasks queue per worker enablement in this pool.
191 Default: `false`
192
193 - `tasksQueueOptions` (optional) - The worker tasks queue options object to use in this pool.
194 Properties:
195
196 - `concurrency` (optional) - The maximum number of tasks that can be executed concurrently on a worker.
197
198 Default: `{ concurrency: 1 }`
199
200 #### `ThreadPoolOptions extends PoolOptions`
201
202 - `workerOptions` (optional) - An object with the worker options to pass to worker. See [worker_threads](https://nodejs.org/api/worker_threads.html#worker_threads_new_worker_filename_options) for more details.
203
204 #### `ClusterPoolOptions extends PoolOptions`
205
206 - `env` (optional) - An object with the environment variables to pass to worker. See [cluster](https://nodejs.org/api/cluster.html#cluster_cluster_fork_env) for more details.
207
208 - `settings` (optional) - An object with the cluster settings. See [cluster](https://nodejs.org/api/cluster.html#cluster_cluster_settings) for more details.
209
210 ### `pool = new FixedThreadPool/FixedClusterPool(numberOfThreads/numberOfWorkers, filePath, opts)`
211
212 `numberOfThreads/numberOfWorkers` (mandatory) Number of workers for this pool
213 `filePath` (mandatory) Path to a file with a worker implementation
214 `opts` (optional) An object with the pool options properties described above
215
216 ### `pool = new DynamicThreadPool/DynamicClusterPool(min, max, filePath, opts)`
217
218 `min` (mandatory) Same as FixedThreadPool/FixedClusterPool numberOfThreads/numberOfWorkers, this number of workers will be always active
219 `max` (mandatory) Max number of workers that this pool can contain, the new created workers will die after a threshold (default is 1 minute, you can override it in your worker implementation).
220 `filePath` (mandatory) Path to a file with a worker implementation
221 `opts` (optional) An object with the pool options properties described above
222
223 ### `pool.execute(data, name)`
224
225 `data` (optional) An object that you want to pass to your worker implementation
226 `name` (optional) A string with the task function name that you want to execute on the worker. Default: `'default'`
227 This method is available on both pool implementations and returns a promise.
228
229 ### `pool.destroy()`
230
231 Destroy method is available on both pool implementations.
232 This method will call the terminate method on each worker.
233
234 ### `class YourWorker extends ThreadWorker/ClusterWorker`
235
236 `taskFunctions` (mandatory) The task function or task functions object that you want to execute on the worker
237 `opts` (optional) An object with these properties:
238
239 - `maxInactiveTime` (optional) - Max time to wait tasks to work on in milliseconds, after this period the new worker will die.
240 The last active time of your worker unit will be updated when a task is submitted to a worker or when a worker terminate a task.
241 If `killBehavior` is set to `KillBehaviors.HARD` this value represents also the timeout for the tasks that you submit to the pool, when this timeout expires your tasks is interrupted and the worker is killed if is not part of the minimum size of the pool.
242 If `killBehavior` is set to `KillBehaviors.SOFT` your tasks have no timeout and your workers will not be terminated until your task is completed.
243 Default: `60000`
244
245 - `killBehavior` (optional) - Dictates if your async unit (worker/process) will be deleted in case that a task is active on it.
246 **KillBehaviors.SOFT**: If `currentTime - lastActiveTime` is greater than `maxInactiveTime` but a task is still executing or queued, then the worker **won't** be deleted.
247 **KillBehaviors.HARD**: If `currentTime - lastActiveTime` is greater than `maxInactiveTime` but a task is still executing or queued, then the worker will be deleted.
248 This option only apply to the newly created workers.
249 Default: `KillBehaviors.SOFT`
250
251 ## General guidance
252
253 Performance is one of the main target of these worker pool implementations, we want to have a strong focus on this.
254 We already have a bench folder where you can find some comparisons.
255
256 ### Internal Node.js thread pool
257
258 Before to jump into each poolifier pool type, let highlight that **Node.js comes with a thread pool already**, the libuv thread pool where some particular tasks already run by default.
259 Please take a look at [which tasks run on the libuv thread pool](https://nodejs.org/en/docs/guides/dont-block-the-event-loop/#what-code-runs-on-the-worker-pool).
260
261 **If your task runs on libuv thread pool**, you can try to:
262
263 - Tune the libuv thread pool size setting the [UV_THREADPOOL_SIZE](https://nodejs.org/api/cli.html#cli_uv_threadpool_size_size).
264
265 and/or
266
267 - Use poolifier cluster pool that spawning child processes will also increase the number of libuv threads since that any new child process comes with a separated libuv thread pool. **More threads does not mean more fast, so please tune your application**.
268
269 ### Cluster vs Threads worker pools
270
271 **If your task does not run into libuv thread pool** and is CPU intensive then poolifier **thread pools** (FixedThreadPool and DynamicThreadPool) are suggested to run CPU intensive tasks, you can still run I/O intensive tasks into thread pools, but performance enhancement is expected to be minimal.
272 Thread pools are built on top of Node.js [worker-threads](https://nodejs.org/api/worker_threads.html#worker_threads_worker_threads) module.
273
274 **If your task does not run into libuv thread pool** and is I/O intensive then poolifier **cluster pools** (FixedClusterPool and DynamicClusterPool) are suggested to run I/O intensive tasks, again you can still run CPU intensive tasks into cluster pools, but performance enhancement is expected to be minimal.
275 Consider that by default Node.js already has great performance for I/O tasks (asynchronous I/O).
276 Cluster pools are built on top of Node.js [cluster](https://nodejs.org/api/cluster.html) module.
277
278 If your task contains code that runs on libuv plus code that is CPU intensive or I/O intensive you either split it either combine more strategies (i.e. tune the number of libuv threads and use cluster/thread pools).
279 But in general, **always profile your application**.
280
281 ### Fixed vs Dynamic pools
282
283 To choose your pool consider that with a FixedThreadPool/FixedClusterPool or a DynamicThreadPool/DynamicClusterPool (in this case is important the min parameter passed to the constructor) your application memory footprint will increase.
284 Increasing the memory footprint, your application will be ready to accept more tasks, but during idle time your application will consume more memory.
285 One good choice from poolifier team point of view is to profile your application using fixed or dynamic worker pool, and to see your application metrics when you increase/decrease the num of workers.
286 For example you could keep the memory footprint low choosing a DynamicThreadPool/DynamicClusterPool with 5 workers, and allow to create new workers until 50/100 when needed, this is the advantage to use the DynamicThreadPool/DynamicClusterPool.
287 But in general, **always profile your application**.
288
289 ## Contribute
290
291 Choose your task here [2.6.x](https://github.com/orgs/poolifier/projects/1), propose an idea, a fix, an improvement.
292
293 See [CONTRIBUTING](CONTRIBUTING.md) guidelines.
294
295 ## Team
296
297 **Creator/Owner:**
298
299 - [**Alessandro Pio Ardizio**](https://github.com/pioardi)
300
301 **_Contributors_**
302
303 - [**Shinigami92**](https://github.com/Shinigami92)
304 - [**Jérôme Benoit**](https://github.com/jerome-benoit)
305
306 ## License
307
308 [MIT](./LICENSE)