3a3c46e0bc6695052dcd753e116efae3fd892dd8
[deb_ffmpeg.git] / ffmpeg / libavcodec / utvideodec.c
1 /*
2 * Ut Video decoder
3 * Copyright (c) 2011 Konstantin Shishkov
4 *
5 * This file is part of FFmpeg.
6 *
7 * FFmpeg is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
11 *
12 * FFmpeg is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
16 *
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with FFmpeg; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20 */
21
22 /**
23 * @file
24 * Ut Video decoder
25 */
26
27 #include <inttypes.h>
28 #include <stdlib.h>
29
30 #include "libavutil/intreadwrite.h"
31 #include "avcodec.h"
32 #include "bswapdsp.h"
33 #include "bytestream.h"
34 #include "get_bits.h"
35 #include "thread.h"
36 #include "utvideo.h"
37
38 static int build_huff(const uint8_t *src, VLC *vlc, int *fsym)
39 {
40 int i;
41 HuffEntry he[256];
42 int last;
43 uint32_t codes[256];
44 uint8_t bits[256];
45 uint8_t syms[256];
46 uint32_t code;
47
48 *fsym = -1;
49 for (i = 0; i < 256; i++) {
50 he[i].sym = i;
51 he[i].len = *src++;
52 }
53 qsort(he, 256, sizeof(*he), ff_ut_huff_cmp_len);
54
55 if (!he[0].len) {
56 *fsym = he[0].sym;
57 return 0;
58 }
59
60 last = 255;
61 while (he[last].len == 255 && last)
62 last--;
63
64 if (he[last].len > 32)
65 return -1;
66
67 code = 1;
68 for (i = last; i >= 0; i--) {
69 codes[i] = code >> (32 - he[i].len);
70 bits[i] = he[i].len;
71 syms[i] = he[i].sym;
72 code += 0x80000000u >> (he[i].len - 1);
73 }
74
75 return ff_init_vlc_sparse(vlc, FFMIN(he[last].len, 11), last + 1,
76 bits, sizeof(*bits), sizeof(*bits),
77 codes, sizeof(*codes), sizeof(*codes),
78 syms, sizeof(*syms), sizeof(*syms), 0);
79 }
80
81 static int decode_plane(UtvideoContext *c, int plane_no,
82 uint8_t *dst, int step, int stride,
83 int width, int height,
84 const uint8_t *src, int use_pred)
85 {
86 int i, j, slice, pix;
87 int sstart, send;
88 VLC vlc;
89 GetBitContext gb;
90 int prev, fsym;
91 const int cmask = ~(!plane_no && c->avctx->pix_fmt == AV_PIX_FMT_YUV420P);
92
93 if (build_huff(src, &vlc, &fsym)) {
94 av_log(c->avctx, AV_LOG_ERROR, "Cannot build Huffman codes\n");
95 return AVERROR_INVALIDDATA;
96 }
97 if (fsym >= 0) { // build_huff reported a symbol to fill slices with
98 send = 0;
99 for (slice = 0; slice < c->slices; slice++) {
100 uint8_t *dest;
101
102 sstart = send;
103 send = (height * (slice + 1) / c->slices) & cmask;
104 dest = dst + sstart * stride;
105
106 prev = 0x80;
107 for (j = sstart; j < send; j++) {
108 for (i = 0; i < width * step; i += step) {
109 pix = fsym;
110 if (use_pred) {
111 prev += pix;
112 pix = prev;
113 }
114 dest[i] = pix;
115 }
116 dest += stride;
117 }
118 }
119 return 0;
120 }
121
122 src += 256;
123
124 send = 0;
125 for (slice = 0; slice < c->slices; slice++) {
126 uint8_t *dest;
127 int slice_data_start, slice_data_end, slice_size;
128
129 sstart = send;
130 send = (height * (slice + 1) / c->slices) & cmask;
131 dest = dst + sstart * stride;
132
133 // slice offset and size validation was done earlier
134 slice_data_start = slice ? AV_RL32(src + slice * 4 - 4) : 0;
135 slice_data_end = AV_RL32(src + slice * 4);
136 slice_size = slice_data_end - slice_data_start;
137
138 if (!slice_size) {
139 av_log(c->avctx, AV_LOG_ERROR, "Plane has more than one symbol "
140 "yet a slice has a length of zero.\n");
141 goto fail;
142 }
143
144 memcpy(c->slice_bits, src + slice_data_start + c->slices * 4,
145 slice_size);
146 memset(c->slice_bits + slice_size, 0, FF_INPUT_BUFFER_PADDING_SIZE);
147 c->bdsp.bswap_buf((uint32_t *) c->slice_bits,
148 (uint32_t *) c->slice_bits,
149 (slice_data_end - slice_data_start + 3) >> 2);
150 init_get_bits(&gb, c->slice_bits, slice_size * 8);
151
152 prev = 0x80;
153 for (j = sstart; j < send; j++) {
154 for (i = 0; i < width * step; i += step) {
155 if (get_bits_left(&gb) <= 0) {
156 av_log(c->avctx, AV_LOG_ERROR,
157 "Slice decoding ran out of bits\n");
158 goto fail;
159 }
160 pix = get_vlc2(&gb, vlc.table, vlc.bits, 3);
161 if (pix < 0) {
162 av_log(c->avctx, AV_LOG_ERROR, "Decoding error\n");
163 goto fail;
164 }
165 if (use_pred) {
166 prev += pix;
167 pix = prev;
168 }
169 dest[i] = pix;
170 }
171 dest += stride;
172 }
173 if (get_bits_left(&gb) > 32)
174 av_log(c->avctx, AV_LOG_WARNING,
175 "%d bits left after decoding slice\n", get_bits_left(&gb));
176 }
177
178 ff_free_vlc(&vlc);
179
180 return 0;
181 fail:
182 ff_free_vlc(&vlc);
183 return AVERROR_INVALIDDATA;
184 }
185
186 static void restore_rgb_planes(uint8_t *src, int step, int stride, int width,
187 int height)
188 {
189 int i, j;
190 uint8_t r, g, b;
191
192 for (j = 0; j < height; j++) {
193 for (i = 0; i < width * step; i += step) {
194 r = src[i];
195 g = src[i + 1];
196 b = src[i + 2];
197 src[i] = r + g - 0x80;
198 src[i + 2] = b + g - 0x80;
199 }
200 src += stride;
201 }
202 }
203
204 static void restore_median(uint8_t *src, int step, int stride,
205 int width, int height, int slices, int rmode)
206 {
207 int i, j, slice;
208 int A, B, C;
209 uint8_t *bsrc;
210 int slice_start, slice_height;
211 const int cmask = ~rmode;
212
213 for (slice = 0; slice < slices; slice++) {
214 slice_start = ((slice * height) / slices) & cmask;
215 slice_height = ((((slice + 1) * height) / slices) & cmask) -
216 slice_start;
217
218 if (!slice_height)
219 continue;
220 bsrc = src + slice_start * stride;
221
222 // first line - left neighbour prediction
223 bsrc[0] += 0x80;
224 A = bsrc[0];
225 for (i = step; i < width * step; i += step) {
226 bsrc[i] += A;
227 A = bsrc[i];
228 }
229 bsrc += stride;
230 if (slice_height <= 1)
231 continue;
232 // second line - first element has top prediction, the rest uses median
233 C = bsrc[-stride];
234 bsrc[0] += C;
235 A = bsrc[0];
236 for (i = step; i < width * step; i += step) {
237 B = bsrc[i - stride];
238 bsrc[i] += mid_pred(A, B, (uint8_t)(A + B - C));
239 C = B;
240 A = bsrc[i];
241 }
242 bsrc += stride;
243 // the rest of lines use continuous median prediction
244 for (j = 2; j < slice_height; j++) {
245 for (i = 0; i < width * step; i += step) {
246 B = bsrc[i - stride];
247 bsrc[i] += mid_pred(A, B, (uint8_t)(A + B - C));
248 C = B;
249 A = bsrc[i];
250 }
251 bsrc += stride;
252 }
253 }
254 }
255
256 /* UtVideo interlaced mode treats every two lines as a single one,
257 * so restoring function should take care of possible padding between
258 * two parts of the same "line".
259 */
260 static void restore_median_il(uint8_t *src, int step, int stride,
261 int width, int height, int slices, int rmode)
262 {
263 int i, j, slice;
264 int A, B, C;
265 uint8_t *bsrc;
266 int slice_start, slice_height;
267 const int cmask = ~(rmode ? 3 : 1);
268 const int stride2 = stride << 1;
269
270 for (slice = 0; slice < slices; slice++) {
271 slice_start = ((slice * height) / slices) & cmask;
272 slice_height = ((((slice + 1) * height) / slices) & cmask) -
273 slice_start;
274 slice_height >>= 1;
275 if (!slice_height)
276 continue;
277
278 bsrc = src + slice_start * stride;
279
280 // first line - left neighbour prediction
281 bsrc[0] += 0x80;
282 A = bsrc[0];
283 for (i = step; i < width * step; i += step) {
284 bsrc[i] += A;
285 A = bsrc[i];
286 }
287 for (i = 0; i < width * step; i += step) {
288 bsrc[stride + i] += A;
289 A = bsrc[stride + i];
290 }
291 bsrc += stride2;
292 if (slice_height <= 1)
293 continue;
294 // second line - first element has top prediction, the rest uses median
295 C = bsrc[-stride2];
296 bsrc[0] += C;
297 A = bsrc[0];
298 for (i = step; i < width * step; i += step) {
299 B = bsrc[i - stride2];
300 bsrc[i] += mid_pred(A, B, (uint8_t)(A + B - C));
301 C = B;
302 A = bsrc[i];
303 }
304 for (i = 0; i < width * step; i += step) {
305 B = bsrc[i - stride];
306 bsrc[stride + i] += mid_pred(A, B, (uint8_t)(A + B - C));
307 C = B;
308 A = bsrc[stride + i];
309 }
310 bsrc += stride2;
311 // the rest of lines use continuous median prediction
312 for (j = 2; j < slice_height; j++) {
313 for (i = 0; i < width * step; i += step) {
314 B = bsrc[i - stride2];
315 bsrc[i] += mid_pred(A, B, (uint8_t)(A + B - C));
316 C = B;
317 A = bsrc[i];
318 }
319 for (i = 0; i < width * step; i += step) {
320 B = bsrc[i - stride];
321 bsrc[i + stride] += mid_pred(A, B, (uint8_t)(A + B - C));
322 C = B;
323 A = bsrc[i + stride];
324 }
325 bsrc += stride2;
326 }
327 }
328 }
329
330 static int decode_frame(AVCodecContext *avctx, void *data, int *got_frame,
331 AVPacket *avpkt)
332 {
333 const uint8_t *buf = avpkt->data;
334 int buf_size = avpkt->size;
335 UtvideoContext *c = avctx->priv_data;
336 int i, j;
337 const uint8_t *plane_start[5];
338 int plane_size, max_slice_size = 0, slice_start, slice_end, slice_size;
339 int ret;
340 GetByteContext gb;
341 ThreadFrame frame = { .f = data };
342
343 if ((ret = ff_thread_get_buffer(avctx, &frame, 0)) < 0)
344 return ret;
345
346 /* parse plane structure to get frame flags and validate slice offsets */
347 bytestream2_init(&gb, buf, buf_size);
348 for (i = 0; i < c->planes; i++) {
349 plane_start[i] = gb.buffer;
350 if (bytestream2_get_bytes_left(&gb) < 256 + 4 * c->slices) {
351 av_log(avctx, AV_LOG_ERROR, "Insufficient data for a plane\n");
352 return AVERROR_INVALIDDATA;
353 }
354 bytestream2_skipu(&gb, 256);
355 slice_start = 0;
356 slice_end = 0;
357 for (j = 0; j < c->slices; j++) {
358 slice_end = bytestream2_get_le32u(&gb);
359 slice_size = slice_end - slice_start;
360 if (slice_end < 0 || slice_size < 0 ||
361 bytestream2_get_bytes_left(&gb) < slice_end) {
362 av_log(avctx, AV_LOG_ERROR, "Incorrect slice size\n");
363 return AVERROR_INVALIDDATA;
364 }
365 slice_start = slice_end;
366 max_slice_size = FFMAX(max_slice_size, slice_size);
367 }
368 plane_size = slice_end;
369 bytestream2_skipu(&gb, plane_size);
370 }
371 plane_start[c->planes] = gb.buffer;
372 if (bytestream2_get_bytes_left(&gb) < c->frame_info_size) {
373 av_log(avctx, AV_LOG_ERROR, "Not enough data for frame information\n");
374 return AVERROR_INVALIDDATA;
375 }
376 c->frame_info = bytestream2_get_le32u(&gb);
377 av_log(avctx, AV_LOG_DEBUG, "frame information flags %"PRIX32"\n",
378 c->frame_info);
379
380 c->frame_pred = (c->frame_info >> 8) & 3;
381
382 if (c->frame_pred == PRED_GRADIENT) {
383 avpriv_request_sample(avctx, "Frame with gradient prediction");
384 return AVERROR_PATCHWELCOME;
385 }
386
387 av_fast_malloc(&c->slice_bits, &c->slice_bits_size,
388 max_slice_size + FF_INPUT_BUFFER_PADDING_SIZE);
389
390 if (!c->slice_bits) {
391 av_log(avctx, AV_LOG_ERROR, "Cannot allocate temporary buffer\n");
392 return AVERROR(ENOMEM);
393 }
394
395 switch (c->avctx->pix_fmt) {
396 case AV_PIX_FMT_RGB24:
397 case AV_PIX_FMT_RGBA:
398 for (i = 0; i < c->planes; i++) {
399 ret = decode_plane(c, i, frame.f->data[0] + ff_ut_rgb_order[i],
400 c->planes, frame.f->linesize[0], avctx->width,
401 avctx->height, plane_start[i],
402 c->frame_pred == PRED_LEFT);
403 if (ret)
404 return ret;
405 if (c->frame_pred == PRED_MEDIAN) {
406 if (!c->interlaced) {
407 restore_median(frame.f->data[0] + ff_ut_rgb_order[i],
408 c->planes, frame.f->linesize[0], avctx->width,
409 avctx->height, c->slices, 0);
410 } else {
411 restore_median_il(frame.f->data[0] + ff_ut_rgb_order[i],
412 c->planes, frame.f->linesize[0],
413 avctx->width, avctx->height, c->slices,
414 0);
415 }
416 }
417 }
418 restore_rgb_planes(frame.f->data[0], c->planes, frame.f->linesize[0],
419 avctx->width, avctx->height);
420 break;
421 case AV_PIX_FMT_YUV420P:
422 for (i = 0; i < 3; i++) {
423 ret = decode_plane(c, i, frame.f->data[i], 1, frame.f->linesize[i],
424 avctx->width >> !!i, avctx->height >> !!i,
425 plane_start[i], c->frame_pred == PRED_LEFT);
426 if (ret)
427 return ret;
428 if (c->frame_pred == PRED_MEDIAN) {
429 if (!c->interlaced) {
430 restore_median(frame.f->data[i], 1, frame.f->linesize[i],
431 avctx->width >> !!i, avctx->height >> !!i,
432 c->slices, !i);
433 } else {
434 restore_median_il(frame.f->data[i], 1, frame.f->linesize[i],
435 avctx->width >> !!i,
436 avctx->height >> !!i,
437 c->slices, !i);
438 }
439 }
440 }
441 break;
442 case AV_PIX_FMT_YUV422P:
443 for (i = 0; i < 3; i++) {
444 ret = decode_plane(c, i, frame.f->data[i], 1, frame.f->linesize[i],
445 avctx->width >> !!i, avctx->height,
446 plane_start[i], c->frame_pred == PRED_LEFT);
447 if (ret)
448 return ret;
449 if (c->frame_pred == PRED_MEDIAN) {
450 if (!c->interlaced) {
451 restore_median(frame.f->data[i], 1, frame.f->linesize[i],
452 avctx->width >> !!i, avctx->height,
453 c->slices, 0);
454 } else {
455 restore_median_il(frame.f->data[i], 1, frame.f->linesize[i],
456 avctx->width >> !!i, avctx->height,
457 c->slices, 0);
458 }
459 }
460 }
461 break;
462 }
463
464 frame.f->key_frame = 1;
465 frame.f->pict_type = AV_PICTURE_TYPE_I;
466 frame.f->interlaced_frame = !!c->interlaced;
467
468 *got_frame = 1;
469
470 /* always report that the buffer was completely consumed */
471 return buf_size;
472 }
473
474 static av_cold int decode_init(AVCodecContext *avctx)
475 {
476 UtvideoContext * const c = avctx->priv_data;
477
478 c->avctx = avctx;
479
480 ff_bswapdsp_init(&c->bdsp);
481
482 if (avctx->extradata_size < 16) {
483 av_log(avctx, AV_LOG_ERROR,
484 "Insufficient extradata size %d, should be at least 16\n",
485 avctx->extradata_size);
486 return AVERROR_INVALIDDATA;
487 }
488
489 av_log(avctx, AV_LOG_DEBUG, "Encoder version %d.%d.%d.%d\n",
490 avctx->extradata[3], avctx->extradata[2],
491 avctx->extradata[1], avctx->extradata[0]);
492 av_log(avctx, AV_LOG_DEBUG, "Original format %"PRIX32"\n",
493 AV_RB32(avctx->extradata + 4));
494 c->frame_info_size = AV_RL32(avctx->extradata + 8);
495 c->flags = AV_RL32(avctx->extradata + 12);
496
497 if (c->frame_info_size != 4)
498 avpriv_request_sample(avctx, "Frame info not 4 bytes");
499 av_log(avctx, AV_LOG_DEBUG, "Encoding parameters %08"PRIX32"\n", c->flags);
500 c->slices = (c->flags >> 24) + 1;
501 c->compression = c->flags & 1;
502 c->interlaced = c->flags & 0x800;
503
504 c->slice_bits_size = 0;
505
506 switch (avctx->codec_tag) {
507 case MKTAG('U', 'L', 'R', 'G'):
508 c->planes = 3;
509 avctx->pix_fmt = AV_PIX_FMT_RGB24;
510 break;
511 case MKTAG('U', 'L', 'R', 'A'):
512 c->planes = 4;
513 avctx->pix_fmt = AV_PIX_FMT_RGBA;
514 break;
515 case MKTAG('U', 'L', 'Y', '0'):
516 c->planes = 3;
517 avctx->pix_fmt = AV_PIX_FMT_YUV420P;
518 avctx->colorspace = AVCOL_SPC_BT470BG;
519 break;
520 case MKTAG('U', 'L', 'Y', '2'):
521 c->planes = 3;
522 avctx->pix_fmt = AV_PIX_FMT_YUV422P;
523 avctx->colorspace = AVCOL_SPC_BT470BG;
524 break;
525 case MKTAG('U', 'L', 'H', '0'):
526 c->planes = 3;
527 avctx->pix_fmt = AV_PIX_FMT_YUV420P;
528 avctx->colorspace = AVCOL_SPC_BT709;
529 break;
530 case MKTAG('U', 'L', 'H', '2'):
531 c->planes = 3;
532 avctx->pix_fmt = AV_PIX_FMT_YUV422P;
533 avctx->colorspace = AVCOL_SPC_BT709;
534 break;
535 default:
536 av_log(avctx, AV_LOG_ERROR, "Unknown Ut Video FOURCC provided (%08X)\n",
537 avctx->codec_tag);
538 return AVERROR_INVALIDDATA;
539 }
540
541 return 0;
542 }
543
544 static av_cold int decode_end(AVCodecContext *avctx)
545 {
546 UtvideoContext * const c = avctx->priv_data;
547
548 av_freep(&c->slice_bits);
549
550 return 0;
551 }
552
553 AVCodec ff_utvideo_decoder = {
554 .name = "utvideo",
555 .long_name = NULL_IF_CONFIG_SMALL("Ut Video"),
556 .type = AVMEDIA_TYPE_VIDEO,
557 .id = AV_CODEC_ID_UTVIDEO,
558 .priv_data_size = sizeof(UtvideoContext),
559 .init = decode_init,
560 .close = decode_end,
561 .decode = decode_frame,
562 .capabilities = CODEC_CAP_DR1 | CODEC_CAP_FRAME_THREADS,
563 };