class SineSphere extends APat { float modelrad = sqrt((model.xMax)*(model.xMax) + (model.yMax)*(model.yMax) + (model.zMax)*(model.zMax)); private BasicParameter yrotspeed = new BasicParameter("yspeed", 3000, 1, 10000); private BasicParameter yrot2speed = new BasicParameter("y2speed", 4000, 1, 15000); private BasicParameter yrot3speed = new BasicParameter("y3speed", 1400, 1, 15000); private BasicParameter vibrationrate = new BasicParameter("vib", 3000, 1, 10000); private SawLFO yrot = new SawLFO(0, TWO_PI, yrotspeed); private SawLFO yrot2 = new SawLFO(0, -TWO_PI, yrot2speed); private SawLFO yrot3 = new SawLFO(0, -TWO_PI, yrot3speed); public BasicParameter huespread = new BasicParameter("Hue", 0, 180); public BasicParameter widthparameter= new BasicParameter("Width", 20, 1, 60); public BasicParameter vibration_magnitude = new BasicParameter("Vmag", 20, 2, modelrad/2); public BasicParameter scale = new BasicParameter("Scale", 1, .1, 5); private int pitch = 0; private int channel = 0; private int velocity = 0; private int cur = 0; public final LXProjection sinespin; public final LXProjection sinespin2; public final LXProjection sinespin3; Pick Galaxy, STime; public BasicParameter rotationx = new BasicParameter("rotx", 0, 0, 1 ); public BasicParameter rotationy = new BasicParameter("roty", 1, 0, 1); public BasicParameter rotationz = new BasicParameter("rotz", 0, 0, 1); public final PVector P = new PVector(); class Sphery { float f1xcenter, f1ycenter, f1zcenter, f2xcenter , f2ycenter, f2zcenter; //second three are for an ellipse with two foci private SinLFO vibration; private SinLFO surfacewave; private SinLFO xbounce; public SinLFO ybounce; private SinLFO zbounce; float vibration_magnitude, vperiod, radius, vibration_min, vibration_max; //public BasicParameter huespread; public BasicParameter bouncerate; public BasicParameter bounceamp; public BasicParameter vibrationrate; public final PVector circlecenter; public Sphery(float f1xcenter, float f1ycenter, float f1zcenter, float radius, float vibration_magnitude , float vperiod) { this.f1xcenter = f1xcenter; this.f1ycenter = f1ycenter; this.f1zcenter = f1zcenter; this.radius = radius; this.circlecenter= new PVector(f1xcenter,f1ycenter,f1zcenter); this.vibration_magnitude = vibration_magnitude; this.vperiod = vperiod; //addParameter(bounceamp = new BasicParameter("Amp", .5)); //addParameter(bouncerate = new BasicParameter("Rate", .5)); //ybounce.modulateDurationBy(bouncerate); //addParameter(vibrationrate = new BasicParameter("vibration", 1000, 10000)); //addParameter(widthparameter = new BasicParameter("Width", .2)); //addModulator(xbounce = new SinLFO(model.xMax/3, 2*model.yMax/3, 2000)).trigger(); addModulator(ybounce= new SinLFO(model.yMax/3, 2*model.yMax/3, 240000)).trigger(); //bounce.modulateDurationBy //addModulator(bounceamp); //ybounce.setMagnitude(bouncerate); addModulator( vibration = new SinLFO( this.radius - vibration_magnitude , this.radius + vibration_magnitude, vperiod)).trigger(); //vibration.setPeriod(240000/lx.tempo.bpm()); } // public Sphery(float f1xcenter, float f1ycenter, float f1zcenter, float vibration_magnitude, float vperiod) // { // this.f1xcenter = f1xcenter; // this.f1ycenter = f1ycenter; // this.f1zcenter = f1zcenter; // this.vibration_magnitude = vibration_magnitude; // this.vperiod = vperiod; // addModulator(ybounce= new SinLFO(model.yMax/3, 2*model.yMax/3, 240000)).trigger(); //bounce.modulateDurationBy // addModulator( vibration = new SinLFO( modelrad/10 - vibration_magnitude , modelrad/10 + vibration_magnitude, vperiod)).trigger(); //vibration.setPeriod(240000/lx.tempo.bpm()); // } //for an ellipse // public Sphery(float f1xcenter, float f1ycenter, float f1zcenter, float f2xcenter, float f2ycenter, float f2zcenter, // float vibration_min, float vibration_max, float vperiod) // { // this.f1xcenter = f1xcenter; // this.f1ycenter = f1ycenter; // this.f1zcenter = f1zcenter; // this.f2xcenter = f2xcenter; // this.f2ycenter = f2ycenter; // this.f2zcenter = f2zcenter; // this.vibration_min = vibration_min; // this.vibration_max = vibration_max; // this.vperiod = vperiod; // //addModulator(xbounce = new SinLFO(model.xMax/3, 2*model.yMax/3, 2000)).trigger(); // addModulator(ybounce).trigger(); // addModulator( vibration = new SinLFO(vibration_min , vibration_max, lx.tempo.rampf())).trigger(); //vibration.modulateDurationBy(vx); // addParameter(widthparameter = new BasicParameter("Width", .1)); // //addParameter(huespread = new BasicParameter("bonk", .2)); // } public int c1c (float a) { return round(100*constrain(a,0,1)); } void setVibrationPeriod(double period){ // to-do: make this conditional upon time signature this.vibration.setPeriod(period); } void setVibrationMagnitude(double mag){ //to-do: make this optionally conditional upon decibel volume, frequency spectrum) this.vibration.setRange(-mag,mag); } float distfromcirclecenter(float px, float py, float pz, float f1x, float f1y, float f1z) { return dist(px, py, pz, f1x, f1y, f1z); } //void updatespherey(deltaMs, ) float quadrant(PVector q) { float qtheta = atan2( (q.x-f1xcenter) , (q.z - f1zcenter) ); float qphi = acos( (q.z-f1zcenter)/(PVector.dist(q,circlecenter)) ); return map(qtheta, -PI/2, PI/2, 200-huespread.getValuef(), 240+huespread.getValuef()); //if (q.x > f1xcenter ) {return 140 ;} //else {return 250;} } // float noisesat(PVector q) { // return noise() // } color spheryvalue (PVector p) { circlecenter.set(this.f1xcenter, this.f1ycenter, this.f1zcenter); //switch(sShpape.cur() ) {} float b = max(0, 100 - widthparameter.getValuef()*abs(p.dist(circlecenter) - vibration.getValuef()) ); if (b <= 0) { return 0; } return lx.hsb( constrain(quadrant(p), 0, 360), // constrain(100*noise(quadrant(p)), 0, 100), 100, b ); } color ellipsevalue(float px, float py, float pz , float f1xc, float f1yc, float f1zc, float f2xc, float f2yc, float f2zc) { //switch(sShpape.cur() ) {} return lx.hsb(huespread.getValuef()*5*px, dist(model.xMax-px, model.yMax-py, model.zMax-pz, f1xc, f1yc, f1zc) , max(0, 100 - 100*widthparameter.getValuef() * abs( (dist(px, py, pz, f1xc, ybounce.getValuef(), f1zc) + (dist(px, py , pz, f2xc, ybounce.getValuef(), f2zc) ) )/2 - 1.2*vibration.getValuef() ) ) ) ; } } boolean noteOn(Note note) { int row = note.getPitch(), col = note.getChannel(); // if (row == 57) {KeyPressed = col; return true; } return super.noteOn(note); } // public boolean noteOn(Note note) { // pitch= note.getPitch(); // velocity=note.getVelocity(); // channel=note.getChannel(); // return true; // } // public boolean gridPressed(int row, int col) { // pitch = row; channel = col; // cur = NumApcCols*(pitch-53)+col; // //setState(row, col, 0 ? 1 : 0); // return true; // } //public grid final Sphery[] spherys; SineSphere(LX lx) { super(lx); println("modelrad " + modelrad); sinespin = new LXProjection(model); sinespin2 = new LXProjection(model); sinespin3= new LXProjection(model); addParameter(huespread); addParameter(vibrationrate); addParameter(widthparameter); addParameter(rotationx); addParameter(rotationy); addParameter(rotationz); addParameter(yrotspeed); addParameter(yrot2speed); addParameter(yrot3speed); addParameter(vibration_magnitude); addParameter(scale); addModulator(yrot).trigger(); addModulator(yrot2).trigger(); addModulator(yrot3).trigger(); //Galaxy = addPick("Galaxy", 1, 3, new String[] {"home", "vertical","single","aquarium"}); STime =addPick("Time", 1, 4, new String[]{"half", "triplet", "beat", "2x", "3x" }); spherys = new Sphery[] { new Sphery(model.xMax/4, model.yMax/2, model.zMax/2, modelrad/12, modelrad/25, 3000), new Sphery(.75*model.xMax, model.yMax/2, model.zMax/2, modelrad/14, modelrad/28, 2000), new Sphery(model.cx, model.cy, model.cz, modelrad/5, modelrad/15, 2300), new Sphery(.7*model.xMax, .65*model.yMax, .5*model.zMax, modelrad/11, modelrad/25, 3500), new Sphery(.75*model.xMax, .8*model.yMax, .7*model.zMax, modelrad/12, modelrad/30, 2000) }; } // public void onParameterChanged(LXParameter parameter) // { // for (Sphery s : spherys) { // if (s == null) continue; // double bampv = s.bounceamp.getValue(); // double brv = s.bouncerate.getValue(); // double tempobounce = lx.tempo.bpm(); // if (parameter == s.bounceamp) // { // s.ybounce.setRange(bampv*model.yMax/3 , bampv*2*model.yMax/3, brv); // } // else if ( parameter == s.bouncerate ) // { // s.ybounce.setDuration(120000./tempobounce); // } // } // } public void run( double deltaMs) { float t = lx.tempo.rampf(); float bpm = lx.tempo.bpmf(); float scalevalue = scale.getValuef(); int spherytime= STime.Cur(); switch (spherytime) { case 0: t = map(.5*t ,0,.5, 0,1); bpm = .5*bpm; break; case 1: t = t; bpm = bpm; break; case 2: t = map(2*t,0,2,0,1); bpm = 2*bpm; break; default: t= t; bpm = bpm; } //switch(sphery.colorscheme) for ( Sphery s: spherys){ s.setVibrationPeriod(vibrationrate.getValuef()); // s.setVibrationMagnitude(vibration_magnitude.getValuef()); } sinespin.reset() // Translate so the center of the car is the origin, offset .center() .scale(scalevalue, scalevalue, scalevalue) // Rotate around the origin (now the center of the car) about an y-vector .rotate(yrot.getValuef(), rotationx.getValuef(), rotationy.getValuef() , rotationz.getValuef()) .translate(model.cx, model.cy, model.cz); for (LXVector p: sinespin) // for (Point p: model.points) { P.set(p.x, p.y, p.z); // PVector P = new PVector(p.x, p.y, p.z); color c = #000000; c = blendIfColor(c, spherys[1].spheryvalue(P), ADD); c = blendIfColor(c, spherys[0].spheryvalue(P), ADD); c = blendIfColor(c, spherys[2].spheryvalue(P),ADD); colors[p.index] = c; } sinespin2.reset() .center() .scale(scalevalue,scalevalue,scalevalue) .rotate(yrot2.getValuef(), rotationx.getValuef(), rotationy.getValuef() , rotationz.getValuef()) .translate(model.cx,model.cy,model.cz); for (LXVector p: sinespin2) { color c = 0; // PVector P = new PVector(p.x, p.y, p.z); P.set(p.x, p.y, p.z); c = blendIfColor(c, spherys[3].spheryvalue(P),ADD); colors[p.index] = blendIfColor(colors[p.index], c , ADD); } sinespin3.reset() .center() .scale(scalevalue,scalevalue,scalevalue) .rotate(yrot3.getValuef(),-1 + rotationx.getValuef(), rotationy.getValuef(), rotationz.getValuef()) .translate(model.cx, model.cy, model.cz); for (LXVector p: sinespin3) { color c = 0; // PVector P = new PVector(p.x, p.y, p.z); P.set(p.x, p.y, p.z); c = blendIfColor(c, spherys[4].spheryvalue(P),ADD); colors[p.index] = blendIfColor(colors[p.index], c , ADD); } } color blendIfColor(color c1, color c2, int mode) { if (c2 != 0) { return blendColor(c1, c2, mode); } return c1; } // color c = 0; // c = blendColor(c, spherys[3].ellipsevalue(Px.x, Px.y, Px.z, model.xMax/4, model.yMax/4, model.zMax/4, 3*model.xMax/4, 3*model.yMax/4, 3*model.zMax/4),ADD); // return c; // } // return lx.hsb(0,0,0); // // else if(spheremode ==2) // { color c = 0; // return lx.hsb(CalcCone( (xyz by = new xyz(0,spherys[2].ybounce.getValuef(),0) ), Px, mid) ); // } // } } /*This just takes all of Dan Horwitz's code that I want to inherit and leaves the rest behind. A work in progress. */ public class APat extends SCPattern { ArrayList picks = new ArrayList (); ArrayList bools = new ArrayList (); PVector mMax, mCtr, mHalf; MidiOutput APCOut; int nMaxRow = 53; float LastJog = -1; float[] xWaveNz, yWaveNz; int nPoint , nPoints; PVector xyzJog = new PVector(), modmin; float NoiseMove = random(10000); BasicParameter pSpark, pWave, pRotX, pRotY, pRotZ, pSpin, pTransX, pTransY; DBool pXsym, pYsym, pRsym, pXdup, pXtrip, pJog, pGrey; float lxh () { return lx.getBaseHuef(); } int c1c (float a) { return round(100*constrain(a,0,1)); } float interpWv(float i, float[] vals) { return interp(i-floor(i), vals[floor(i)], vals[ceil(i)]); } void setNorm (PVector vec) { vec.set(vec.x/mMax.x, vec.y/mMax.y, vec.z/mMax.z); } void setRand (PVector vec) { vec.set(random(mMax.x), random(mMax.y), random(mMax.z)); } void setVec (PVector vec, LXPoint p) { vec.set(p.x, p.y, p.z); } void interpolate(float i, PVector a, PVector b) { a.set(interp(i,a.x,b.x), interp(i,a.y,b.y), interp(i,a.z,b.z)); } void StartRun(double deltaMs) { } float val (BasicParameter p) { return p.getValuef(); } color CalcPoint(PVector p) { return lx.hsb(0,0,0); } color blend3(color c1, color c2, color c3) { return blendColor(c1,blendColor(c2,c3,ADD),ADD); } void rotateZ (PVector p, PVector o, float nSin, float nCos) { p.set( nCos*(p.x-o.x) - nSin*(p.y-o.y) + o.x , nSin*(p.x-o.x) + nCos*(p.y-o.y) + o.y,p.z); } void rotateX (PVector p, PVector o, float nSin, float nCos) { p.set(p.x,nCos*(p.y-o.y) - nSin*(p.z-o.z) + o.y , nSin*(p.y-o.y) + nCos*(p.z-o.z) + o.z ); } void rotateY (PVector p, PVector o, float nSin, float nCos) { p.set( nSin*(p.z-o.z) + nCos*(p.x-o.x) + o.x,p.y, nCos*(p.z-o.z) - nSin*(p.x-o.x) + o.z ); } BasicParameter addParam(String label, double value) { BasicParameter p = new BasicParameter(label, value); addParameter(p); return p; } PVector vT1 = new PVector(), vT2 = new PVector(); float calcCone (PVector v1, PVector v2, PVector c) { vT1.set(v1); vT2.set(v2); vT1.sub(c); vT2.sub(c); return degrees(PVector.angleBetween(vT1,vT2)); } Pick addPick(String name, int def, int _max, String[] desc) { Pick P = new Pick(name, def, _max+1, nMaxRow, desc); nMaxRow = P.EndRow + 1; picks.add(P); return P; } boolean noteOff(Note note) { int row = note.getPitch(), col = note.getChannel(); for (int i=0; i= 0.55) { return raw - 0.05; } return 0.5; } void setAPCOutput(MidiOutput output) { APCOut = output; } void updateLights() { if (APCOut == null) return; for (int i = 0; i < NumApcRows; ++i) for (int j = 0; j < 8; ++j) APCOut.sendNoteOn(j, 53+i, 0); for (int i=0; i 100) return; if (this == midiEngine.getFocusedDeck().getActivePattern()) { String Text1="", Text2=""; for (int i=0; i 0) { for (int i=0; i 0) {P.y += sprk*randctr(50); P.x += sprk*randctr(50); P.z += sprk*randctr(50); } if (wvAmp > 0) P.y += interpWv(p.x-modmin.x, yWaveNz); if (wvAmp > 0) P.x += interpWv(p.y-modmin.y, xWaveNz); if (pJog.b) P.add(xyzJog); color cNew, cOld = colors[p.index]; { tP.set(P); cNew = CalcPoint(tP); } if (pXsym.b) { tP.set(mMax.x-P.x,P.y,P.z); cNew = blendColor(cNew, CalcPoint(tP), ADD); } if (pYsym.b) { tP.set(P.x,mMax.y-P.y,P.z); cNew = blendColor(cNew, CalcPoint(tP), ADD); } if (pRsym.b) { tP.set(mMax.x-P.x,mMax.y-P.y,mMax.z-P.z); cNew = blendColor(cNew, CalcPoint(tP), ADD); } if (pXdup.b) { tP.set((P.x+mMax.x*.5)%mMax.x,P.y,P.z); cNew = blendColor(cNew, CalcPoint(tP), ADD); } if (pGrey.b) { cNew = lx.hsb(0, 0, lx.b(cNew)); } colors[p.index] = cNew; } } } class CubeCurl extends SCPattern{ float CH, CW, diag; ArrayList cubeorigin = new ArrayList(); ArrayList centerlist = new ArrayList(); private SinLFO curl = new SinLFO(0, Cube.EDGE_HEIGHT, 5000 ); private SinLFO bg = new SinLFO(180, 220, 3000); CubeCurl(LX lx){ super(lx); addModulator(curl).trigger(); addModulator(bg).trigger(); this.CH = Cube.EDGE_HEIGHT; this.CW = Cube.EDGE_WIDTH; this.diag = sqrt(CW*CW + CW*CW); ArrayList centerlistrelative = new ArrayList(); for (int i = 0; i < model.cubes.size(); i++){ Cube a = model.cubes.get(i); cubeorigin.add(new PVector(a.x, a.y, a.z)); centerlist.add(new PVector(a.cx, a.cy, a.cz) ); } } //there is definitely a better way of doing this! PVector centerofcube(int i) { Cube c = model.cubes.get(i); PVector cubecenter = new PVector(c.cx, c.cy, c.cz); return cubecenter; } void run(double deltaMs){ for (int i =0; i < model.cubes.size(); i++) { Cube c = model.cubes.get(i); float cfloor = c.y; // if (i%3 == 0){ // for (LXPoint p : c.points ){ // // colors[p.index]=color(0,0,0); // //float dif = (p.y - c.y); // //colors[p.index] = color( bg.getValuef() , 80 , dif < curl.getValuef() ? 80 : 0, ADD); // } // } // else if (i%3 == 1) { // for (LXPoint p: c.points){ // colors[p.index]=color(0,0,0); // float dif = (p.y - c.y); // // colors[p.index] = // // color(bg.getValuef(), // // map(curl.getValuef(), 0, Cube.EDGE_HEIGHT, 20, 100), // // 100 - 10*abs(dif - curl.getValuef()), ADD ); // } // } // else if (i%3 == 2){ // centerlist[i].sub(cubeorigin(i); for (LXPoint p: c.points) { PVector pv = new PVector(p.x, p.y, p.z); colors[p.index] =color( constrain(4* pv.dist(centerlist.get(i)), 0, 360) , 50, 100 ); // colors[p.index] =color(constrain(centerlist[i].x, 0, 360), constrain(centerlist[i].y, 0, 100), ); } //} } } } JGraphAdapterDemo graph1; // class SpinningCube extends SCPattern{ // LXProjection spin1, spin2, spin3; // SawLFO //} class PixelGraph implements EdgeFactory { dPixel p0; dPixel p1; dVertex v0; public dVertex createEdge(dPixel p0, dPixel p1) { return v0; } } class GraphTest extends SCPattern { JGraphAdapterDemo graph1; GraphTest( LX lx) {super(lx); JGraphAdapterDemo graph1 = new JGraphAdapterDemo();} void run(double deltaMs){ } } class SpinningCube extends SCPattern{ LXProjection spin1, spin2, spin3; SawLFO spinx, spiny, spinz; SinLFO spinx1, spiny1, spinz1, cubesize; BasicParameter xoff = new BasicParameter("xoff", 10, 0, 100); BasicParameter toff = new BasicParameter("toff", 10,0,1000); BasicParameter huev = new BasicParameter("hue", 200, 0, 360); BasicParameter density = new BasicParameter("density", 0, 0, 1); BasicParameter Vsize = new BasicParameter("size", model.xMax/3,0, model.xMax); VirtualCube V1, V2, V3; PVector P = new PVector(); float noisetime=0.; class VirtualCube { float x,y,z,d; PVector center; VirtualCube(float x, float y, float z, float d) { this.x=x; this.y= y; this.z=z; this.d=d; this.center=new PVector(x,y,z); } color getcolor(LXVector q) { if ( q.x > this.x + d/2 || q.x < this.x - d/2 || q.y > this.y + d/2 || q.y < this.y - d/2 || q.z > this.z + d/2 || q.z < this.z - d/2 ) {return 0;} else { return lx.hsb(huev.getValuef()*noise(xoff.getValuef()*.001*noisetime ) , constrain(100*noise(xoff.getValuef()*.001*q.x*noisetime), 0, 100), max(100*(noise(xoff.getValuef()*.001*q.x*noisetime)-density.getValuef()), 0) ); } } void setcenter(float x, float y, float z) {this.x=x; this.y = y; this.z=z; } void setsize(float din){ this.d=din ; } } SpinningCube(LX lx) { super(lx); addParameter(xoff); addParameter(toff); addParameter(Vsize); addParameter(huev); addParameter(density); //addModulator() V1 = new VirtualCube(model.cx, model.cy, model.cz, model.xMax/2); spinx= new SawLFO(0, TWO_PI, 8000); spin1 = new LXProjection(model); } void run(double deltaMs) { noisetime+= deltaMs*.0001*toff.getValuef(); spin1.reset() .center() //.scale () .rotate(spinx.getValuef(),0, 1, 0) .translate(model.cx, model.cy, model.cz); for (LXVector p: spin1) { P.set(p.x, p.y, p.z); colors[p.index] = V1.getcolor(p); } V1.setsize(Vsize.getValuef()); }; } class HueTestHSB extends SCPattern{ BasicParameter HueT = new BasicParameter("Hue", .5); BasicParameter SatT = new BasicParameter("Sat", .5); BasicParameter BriT = new BasicParameter("Bright", .5); HueTestHSB(LX lx) { super(lx); addParameter(HueT); addParameter(SatT); addParameter(BriT); } void run(double deltaMs){ for (LXPoint p : model.points) { color c = 0; c = blendColor(c, lx.hsb(360*HueT.getValuef(), 100*SatT.getValuef(), 100*BriT.getValuef()), ADD); colors[p.index]= c; } int now= millis(); if (now % 1000 <= 20) { println("Hue: " + 360*HueT.getValuef() + "Sat: " + 100*SatT.getValuef() + "Bright: " + 100*BriT.getValuef()); } } }