/** * DOUBLE BLACK DIAMOND DOUBLE BLACK DIAMOND * * //\\ //\\ //\\ //\\ * ///\\\ ///\\\ ///\\\ ///\\\ * \\\/// \\\/// \\\/// \\\/// * \\// \\// \\// \\// * * EXPERTS ONLY!! EXPERTS ONLY!! * * This file implements the mapping functions needed to lay out the physical * cubes and the output ports on the panda board. It should only be modified * when physical changes or tuning is being done to the structure. */ public Model buildModel() { // Shorthand helpers for specifying wiring more quickly final Cube.Wiring WFL = Cube.Wiring.FRONT_LEFT; final Cube.Wiring WFR = Cube.Wiring.FRONT_RIGHT; final Cube.Wiring WRL = Cube.Wiring.REAR_LEFT; final Cube.Wiring WRR = Cube.Wiring.REAR_RIGHT; // Utility value if you need the height of a cube shorthand final float CH = Cube.EDGE_HEIGHT; // Positions for the bass box final float BBY = BassBox.EDGE_HEIGHT + BoothFloor.PLEXI_WIDTH; final float BBX = 56; final float BBZ = 2; // The model is represented as an array of towers. The cubes in the tower // are represenented relatively. Each tower has an x, y, z reference position, // which is typically the base cube's bottom left corner. // // Following that is an array of floats. A 2-d array contains an x-offset // and a z-offset from the previous reference position. Typically the first cube // will just be {0, 0}. Each successive cube uses the position of the previous // cube as its reference. // // A 3-d array contains an x-offset, a z-offset, and a rotation about the // y-axis. // // The cubes automatically increment their y-position by Cube.EDGE_HEIGHT. TowerMapping[] towerCubes = new TowerMapping[] { // DJ booth, from left to right new TowerMapping(BBX, BBY, BBZ, new CubeMapping[] { new CubeMapping(-7.25, 7.5, -25, WFR), new CubeMapping(7.5, -15.75, 12, WRL), }), new TowerMapping(BBX, BBY, BBZ, new CubeMapping[] { new CubeMapping(19.625, 5.375, -22, WFR), new CubeMapping(8, -14.5, 10, WRR), }), new TowerMapping(BBX, BBY, BBZ, new CubeMapping[] { new CubeMapping(48, 4.75, -35, WRL), new CubeMapping(8, -15, 10, WRR), }), new TowerMapping(BBX, BBY, BBZ, new CubeMapping[] { new CubeMapping(78.75, 3.75, -28, WRR), new CubeMapping(8, -15, 10, WRR), }), new TowerMapping(BBX, BBY, BBZ, new CubeMapping[] { new CubeMapping(104.75, 0, -27, WRL), new CubeMapping(8, -15, 10, WFL), }), }; // Single cubes can be constructed directly here if you need them Cube[] singleCubes = new Cube[] { // new Cube(x, y, z, rx, ry, rz, wiring), }; // The bass box! BassBox bassBox = new BassBox(BBX, 0, BBZ); // The speakers! List speakers = Arrays.asList(new Speaker[] { // each speaker parameter is x, y, z, rotation, the left speaker comes first new Speaker(-12, 6, 0, 15), new Speaker(TRAILER_WIDTH - Speaker.EDGE_WIDTH + 8, 6, 3, -15) }); ////////////////////////////////////////////////////////////////////// // BENEATH HERE SHOULD NOT REQUIRE ANY MODIFICATION!!!! // ////////////////////////////////////////////////////////////////////// // These guts just convert the shorthand mappings into usable objects ArrayList towerList = new ArrayList(); ArrayList tower; Cube[] cubes = new Cube[80]; int cubeIndex = 1; float px, pz, ny; for (TowerMapping tm : towerCubes) { px = tm.x; ny = tm.y; pz = tm.z; tower = new ArrayList(); for (CubeMapping cm : tm.cubeMappings) { tower.add(cubes[cubeIndex++] = new Cube(px = px + cm.dx, ny, pz = pz + cm.dz, 0, cm.ry, 0, cm.wiring)); ny += Cube.EDGE_HEIGHT; } towerList.add(new Tower(tower)); } for (Cube cube : singleCubes) { cubes[cubeIndex++] = cube; } return new Model(towerList, cubes, bassBox, speakers); } /** * This function maps the panda boards. We have an array of them, each has * an IP address and a list of channels. */ public PandaMapping[] buildPandaList() { final int LEFT_SPEAKER = 0; final int RIGHT_SPEAKER = 1; return new PandaMapping[] { new PandaMapping( "10.200.1.29", new ChannelMapping[] { new ChannelMapping(ChannelMapping.MODE_CUBES, new int[] { 1, 2, 3, 4 }), new ChannelMapping(ChannelMapping.MODE_CUBES, new int[] { 1, 2, 3, 4 }), new ChannelMapping(ChannelMapping.MODE_CUBES, new int[] { 1, 2, 3, 4 }), new ChannelMapping(ChannelMapping.MODE_CUBES, new int[] { 1, 2, 3, 4 }), new ChannelMapping(ChannelMapping.MODE_CUBES, new int[] { 1, 2, 3, 4 }), new ChannelMapping(ChannelMapping.MODE_CUBES, new int[] { 1, 2, 3, 4 }), new ChannelMapping(ChannelMapping.MODE_CUBES, new int[] { 1, 2, 3, 4 }), new ChannelMapping(ChannelMapping.MODE_BASS), new ChannelMapping(ChannelMapping.MODE_STRUTS_AND_FLOOR), new ChannelMapping(ChannelMapping.MODE_SPEAKER, LEFT_SPEAKER), new ChannelMapping(ChannelMapping.MODE_SPEAKER, RIGHT_SPEAKER), new ChannelMapping(ChannelMapping.MODE_CUBES, new int[] { 1, 2, 3, 4 }), new ChannelMapping(ChannelMapping.MODE_CUBES, new int[] { 1, 2, 3, 4 }), new ChannelMapping(ChannelMapping.MODE_CUBES, new int[] { 1, 2, 3, 4 }), new ChannelMapping(ChannelMapping.MODE_CUBES, new int[] { 1, 2, 3, 4 }), new ChannelMapping(ChannelMapping.MODE_CUBES, new int[] { 1, 2, 3, 4 }), }), new PandaMapping( "10.200.1.28", new ChannelMapping[] { new ChannelMapping(ChannelMapping.MODE_CUBES, new int[] { 1, 2, 3, 4 }), new ChannelMapping(ChannelMapping.MODE_CUBES, new int[] { 1, 2, 3, 4 }), new ChannelMapping(ChannelMapping.MODE_CUBES, new int[] { 1, 2, 3, 4 }), new ChannelMapping(ChannelMapping.MODE_CUBES, new int[] { 1, 2, 3, 4 }), new ChannelMapping(ChannelMapping.MODE_CUBES, new int[] { 1, 2, 3, 4 }), new ChannelMapping(ChannelMapping.MODE_CUBES, new int[] { 1, 2, 3, 4 }), new ChannelMapping(ChannelMapping.MODE_CUBES, new int[] { 1, 2, 3, 4 }), new ChannelMapping(ChannelMapping.MODE_CUBES, new int[] { 1, 2, 3, 4 }), new ChannelMapping(ChannelMapping.MODE_CUBES, new int[] { 1, 2, 3, 4 }), new ChannelMapping(ChannelMapping.MODE_CUBES, new int[] { 1, 2, 3, 4 }), new ChannelMapping(ChannelMapping.MODE_CUBES, new int[] { 1, 2, 3, 4 }), new ChannelMapping(ChannelMapping.MODE_CUBES, new int[] { 1, 2, 3, 4 }), new ChannelMapping(ChannelMapping.MODE_CUBES, new int[] { 1, 2, 3, 4 }), new ChannelMapping(ChannelMapping.MODE_CUBES, new int[] { 1, 2, 3, 4 }), new ChannelMapping(ChannelMapping.MODE_CUBES, new int[] { 1, 2, 3, 4 }), new ChannelMapping(ChannelMapping.MODE_CUBES, new int[] { 1, 2, 3, 4 }), }), }; } class TowerMapping { public final float x, y, z; public final CubeMapping[] cubeMappings; TowerMapping(float x, float y, float z, CubeMapping[] cubeMappings) { this.x = x; this.y = y; this.z = z; this.cubeMappings = cubeMappings; } } class CubeMapping { public final float dx, dz, ry; public final Cube.Wiring wiring; CubeMapping(float dx, float dz, Cube.Wiring wiring) { this(dx, dz, 0, wiring); } CubeMapping(float dx, float dz, float ry) { this(dz, dz, ry, Cube.Wiring.FRONT_LEFT); } CubeMapping(float dx, float dz, float ry, Cube.Wiring wiring) { this.dx = dx; this.dz = dz; this.ry = ry; this.wiring = wiring; } } /** * Each panda board has an IP address and a fixed number of channels. The channels * each have a fixed number of pixels on them. Whether or not that many physical * pixels are connected to the channel, we still send it that much data. */ class PandaMapping { // How many channels are on the panda board public final static int CHANNELS_PER_BOARD = 16; // How many total pixels on the whole board public final static int PIXELS_PER_BOARD = ChannelMapping.PIXELS_PER_CHANNEL * CHANNELS_PER_BOARD; final String ip; final ChannelMapping[] channelList = new ChannelMapping[CHANNELS_PER_BOARD]; PandaMapping(String ip, ChannelMapping[] rawChannelList) { this.ip = ip; // Ensure our array is the right length and has all valid items in it for (int i = 0; i < channelList.length; ++i) { channelList[i] = (i < rawChannelList.length) ? rawChannelList[i] : new ChannelMapping(); if (channelList[i] == null) { channelList[i] = new ChannelMapping(); } } } } /** * Each channel on a pandaboard can be mapped in a number of modes. The typial is * to a series of connected cubes, but we also have special mappings for the bass box, * the speaker enclosures, and the DJ booth floor. * * This class is just the mapping meta-data. It sanitizes the input to make sure * that the cubes and objects being referenced actually exist in the model. * * The logic for how to encode the pixels is contained in the PandaDriver. */ class ChannelMapping { // How many cubes per channel xc_PB is configured for public final static int CUBES_PER_CHANNEL = 4; // How many total pixels on each channel public final static int PIXELS_PER_CHANNEL = Cube.POINTS_PER_CUBE * CUBES_PER_CHANNEL; public static final int MODE_NULL = 0; public static final int MODE_CUBES = 1; public static final int MODE_BASS = 2; public static final int MODE_SPEAKER = 3; public static final int MODE_STRUTS_AND_FLOOR = 4; public static final int MODE_INVALID = 5; public static final int NO_OBJECT = -1; final int mode; final int[] objectIndices = new int[CUBES_PER_CHANNEL]; ChannelMapping() { this(MODE_NULL); } ChannelMapping(int mode) { this(mode, new int[]{}); } ChannelMapping(int mode, int rawObjectIndex) { this(mode, new int[]{ rawObjectIndex }); } ChannelMapping(int mode, int[] rawObjectIndices) { if (mode < 0 || mode >= MODE_INVALID) { throw new RuntimeException("Invalid channel mapping mode: " + mode); } if (mode == MODE_SPEAKER) { if (rawObjectIndices.length != 1) { throw new RuntimeException("Speaker channel mapping mode must specify one speaker index"); } int speakerIndex = rawObjectIndices[0]; if (speakerIndex < 0 || speakerIndex >= glucose.model.speakers.size()) { throw new RuntimeException("Invalid speaker channel mapping: " + speakerIndex); } } else if ((mode == MODE_STRUTS_AND_FLOOR) || (mode == MODE_BASS) || (mode == MODE_NULL)) { if (rawObjectIndices.length > 0) { throw new RuntimeException("Bass/floor/null mappings cannot specify object indices"); } } else if (mode == MODE_CUBES) { for (int rawCubeIndex : rawObjectIndices) { if (glucose.model.getCubeByRawIndex(rawCubeIndex) == null) { throw new RuntimeException("Non-existing cube specified in cube mapping: " + rawCubeIndex); } } } this.mode = mode; for (int i = 0; i < objectIndices.length; ++i) { objectIndices[i] = (i < rawObjectIndices.length) ? rawObjectIndices[i] : NO_OBJECT; } } }