/** * DOUBLE BLACK DIAMOND DOUBLE BLACK DIAMOND * * //\\ //\\ //\\ //\\ * ///\\\ ///\\\ ///\\\ ///\\\ * \\\/// \\\/// \\\/// \\\/// * \\// \\// \\// \\// * * EXPERTS ONLY!! EXPERTS ONLY!! * * This file implements the mapping functions needed to lay out the physical * cubes and the output ports on the panda board. It should only be modified * when physical changes or tuning is being done to the structure. */ final int MaxCubeHeight = 6; final int NumBackTowers = 16; public Model buildModel() { // Shorthand helpers for specifying wiring more quickly final Cube.Wiring WFL = Cube.Wiring.FRONT_LEFT; final Cube.Wiring WFR = Cube.Wiring.FRONT_RIGHT; final Cube.Wiring WRL = Cube.Wiring.REAR_LEFT; final Cube.Wiring WRR = Cube.Wiring.REAR_RIGHT; // Utility value if you need the height of a cube shorthand final float CH = Cube.EDGE_HEIGHT; final float CW = Cube.EDGE_WIDTH ; // Positions for the bass box final float BBY = BassBox.EDGE_HEIGHT + BoothFloor.PLEXI_WIDTH; final float BBX = 56; final float BBZ = 2; // The model is represented as an array of towers. The cubes in the tower // are represenented relatively. Each tower has an x, y, z reference position, // which is typically the base cube's bottom left corner. // // Following that is an array of floats. A 2-d array contains an x-offset // and a z-offset from the previous reference position. Typically the first cube // will just be {0, 0}. Each successive cube uses the position of the previous // cube as its reference. // // A 3-d array contains an x-offset, a z-offset, and a rotation about the // y-axis. // // The cubes automatically increment their y-position by Cube.EDGE_HEIGHT. // To-Do: (Mark Slee, Alex Green, or Ben Morrow): The Cube # is determined by the order in this list. // "raw object index" is serialized by running through towermapping and then individual cube mapping below. // We can do better than this. The raw object index should be obvious from the code-- looking through the // rendered simulation and counting through cubes in mapping mode is grossly inefficient. TowerMapping[] towerCubes = new TowerMapping[] {}; // Single cubes can be constructed directly here if you need them Cube[] singleCubes = new Cube[] { // new Cube(15, int( Cube.EDGE_HEIGHT), 39, 0, 10, 0, WRL), // Back left channel behind speaker //new Cube(x, y, z, rx, ry, rz, wiring), //new Cube(0,0,0,0,225,0, WRR), }; // The bass box! // BassBox bassBox = BassBox.unlitBassBox(BBX, 0, BBZ); // frame exists, no lights BassBox bassBox = BassBox.noBassBox(); // no bass box at all // BassBox bassBox = new BassBox(BBX, 0, BBZ); // bass box with lights // The speakers! List speakers = Arrays.asList(new Speaker[] { // Each speaker parameter is x, y, z, rotation, the left speaker comes first // new Speaker(TRAILER_WIDTH - Speaker.EDGE_WIDTH + 8, 6, 3, -15) }); //////////////////////////////////////////////////////////////////////// // dan's proposed lattice ArrayList scubes = new ArrayList(); //if (NumBackTowers != 25) exit(); for (int i=0; i dcubes = new ArrayList(); // for (int i=1; i<6; i++) { // if (i>1) dcubes.add(new Cube(-6+CW*4/3*i , 0, 0, 0, 0, 0, WRR)); // dcubes.add(new Cube(-6+CW*4/3*i+CW*2/3., CH*.5, 0, 0, 0, 0, WRR)); // } float current_x_position = 0; // scubes.add(new StaggeredTower(//tower 1 // current_x_position, // x // 15 , // y // 0 , // z // 45, 6, new Cube.Wiring[] { WFL, WRR, WFL, WRR, WFL, WRR}) ); // current_x_position += 25.25; // scubes.add(new StaggeredTower(// tower 2 // current_x_position, // x // 0 , // y // -10.5 , // z // 45, 6, new Cube.Wiring[] { WFR, WFL, WRR, WRR, WFL, WRR}) ); // current_x_position += 25.25; // scubes.add(new StaggeredTower(//tower 3 // current_x_position, // x // 15 , // y // 0, // z // 45, 6, new Cube.Wiring[] { WRR, WFL, WRR, WRR, WFL, WRR}) ); // current_x_position += 25.25; // scubes.add(new StaggeredTower(//tower 4 // current_x_position, // x // 0, // y // -10.5 , // z // 45, 6, new Cube.Wiring[] { WFL, WRR, WFL, WRR, WFL, WRR}) ); // current_x_position += 28; // scubes.add(new StaggeredTower(//tower 5 // current_x_position, // x // 15 , // y // -4.5 , // z // 45, 6, new Cube.Wiring[] { WRR, WFL, WRR, WFL, WRR, WFL}) ); // current_x_position += 28; // scubes.add(new StaggeredTower(//tower 6 // current_x_position, // x // 0 , // y // -10.5, // z // 45, 6, new Cube.Wiring[] { WFL, WRR, WFL, WRR, WFL, WRR}) ); // current_x_position += 25.25; // scubes.add(new StaggeredTower(// tower 7 // current_x_position, // x // 15 , // y // 0, // z // 45, 6, new Cube.Wiring[] { WRR, WFL, WRR, WFL, WRR, WFL}) ); // current_x_position += 25.25; // scubes.add(new StaggeredTower(//tower 8 // current_x_position, // x // 0 , // y // -10.5 , // z // 45, 6, new Cube.Wiring[] { WFL, WRR, WFL, WRR, WFL, WRR}) ); // current_x_position += 25.25; // scubes.add(new StaggeredTower(//tower 9 // current_x_position, // x // 15 , // y // 0, // z // 45, 6, new Cube.Wiring[] { WFL, WRR, WFL, WRR, WFL, WRR}) ); // current_x_position += 25.25; // //TOWERS ON DANCE FLOOR // scubes.add(new StaggeredTower(//tower 10 // 83.75+39+43-124.5, // x // 0, // y // -47.5-43, // z // 45, 4, new Cube.Wiring[]{ WRR, WFL, WFL, WRR}) ); // scubes.add(new StaggeredTower(//tower 11 // 83.75, // x // 0, // y // -47.5, // z // 45, 4, new Cube.Wiring[]{ WFL, WRR, WRR, WFL}) ); // scubes.add(new StaggeredTower(//tower 12 // 83.75+39, // x // 0, // y // -47.5, // z // 45, 4, new Cube.Wiring[]{ WRR, WFL, WFL, WRR}) ); // scubes.add(new StaggeredTower(//tower 13 // 83.75+39+43, // x // 0, // y // -47.5-43, // z // 45, 4, new Cube.Wiring[]{ WFL, WRR, WFL, WRR}) ); // scubes.add(new StaggeredTower(// Single cube on top of tower 4 // 42, // x // 112 , // y // 72, // z // -10, 1, new Cube.Wiring[]{ WRL}) ); ////////////////////////////////////////////////////////////////////// // BENEATH HERE SHOULD NOT REQUIRE ANY MODIFICATION!!!! // ////////////////////////////////////////////////////////////////////// // These guts just convert the shorthand mappings into usable objects ArrayList towerList = new ArrayList(); ArrayList tower; Cube[] cubes = new Cube[200]; int cubeIndex = 1; float px, pz, ny; for (TowerMapping tm : towerCubes) { px = tm.x; ny = tm.y; pz = tm.z; tower = new ArrayList(); for (CubeMapping cm : tm.cubeMappings) { tower.add(cubes[cubeIndex++] = new Cube(px = px + cm.dx, ny, pz = pz + cm.dz, 0, cm.ry, 0, cm.wiring)); ny += Cube.EDGE_HEIGHT; } towerList.add(new Tower(tower)); } for (Cube cube : singleCubes) { cubes[cubeIndex++] = cube; } for (Cube cube : dcubes) { cubes[cubeIndex++] = cube; } for (StaggeredTower st : scubes) { tower = new ArrayList(); for (int i=0; i < st.n; i++) { Cube.Wiring w = (i < st.wiring.length) ? st.wiring[i] : WRR; tower.add(cubes[cubeIndex++] = new Cube(st.x, st.y + CH* 4/3.*i, st.z, 0, st.r, 0, w)); } towerList.add(new Tower(tower)); } return new Model(towerList, cubes, bassBox, speakers); } /** * This function maps the panda boards. We have an array of them, each has * an IP address and a list of channels. */ public PandaMapping[] buildPandaList() { final int LEFT_SPEAKER = 0; final int RIGHT_SPEAKER = 1; // 8 channels map to: 3, 4, 7, 8, 13, 14, 15, 16. return new PandaMapping[] { new PandaMapping( "10.200.1.28", new ChannelMapping[] { new ChannelMapping(ChannelMapping.MODE_CUBES, new int[] { 37, 38, 39 }), new ChannelMapping(ChannelMapping.MODE_CUBES, new int[] { }), new ChannelMapping(ChannelMapping.MODE_CUBES, new int[] { 43, 44, 45 }), new ChannelMapping(ChannelMapping.MODE_CUBES, new int[] { 46, 47, 48 }), new ChannelMapping(ChannelMapping.MODE_CUBES, new int[] { }), // new front thing new ChannelMapping(ChannelMapping.MODE_CUBES, new int[] { }), // new back thing new ChannelMapping(ChannelMapping.MODE_CUBES, new int[] { 13, 14, 15 }), // new back thing }), new PandaMapping( "10.200.1.29", new ChannelMapping[] { new ChannelMapping(ChannelMapping.MODE_CUBES, new int[] { 19, 20, 21 }), new ChannelMapping(ChannelMapping.MODE_CUBES, new int[] { }), new ChannelMapping(ChannelMapping.MODE_CUBES, new int[] { 1, 2, 3 }), new ChannelMapping(ChannelMapping.MODE_CUBES, new int[] { 4, 5, 6 }), new ChannelMapping(ChannelMapping.MODE_CUBES, new int[] { 7, 8, 9 }), new ChannelMapping(ChannelMapping.MODE_CUBES, new int[] { 10, 11, 12 }), new ChannelMapping(ChannelMapping.MODE_CUBES, new int[] { 16, 17, 18 }), // new ChannelMapping(ChannelMapping.MODE_CUBES, new int[] { 34, 35, 36}), // new ChannelMapping(ChannelMapping.MODE_CUBES, new int[] { }), // new ChannelMapping(ChannelMapping.MODE_CUBES, new int[] { 19, 20, 21}), // new ChannelMapping(ChannelMapping.MODE_CUBES, new int[] { 22, 23, 24}), // new ChannelMapping(ChannelMapping.MODE_CUBES, new int[] { 25, 26, 27}), // new ChannelMapping(ChannelMapping.MODE_CUBES, new int[] { 28, 29, 30}), // new ChannelMapping(ChannelMapping.MODE_CUBES, new int[] { 31, 32, 33}), // new ChannelMapping(ChannelMapping.MODE_CUBES, new int[] { }), }), new PandaMapping( "10.200.1.30", new ChannelMapping[] { new ChannelMapping(ChannelMapping.MODE_CUBES, new int[] { 40, 41, 42 }), new ChannelMapping(ChannelMapping.MODE_CUBES, new int[] { }), new ChannelMapping(ChannelMapping.MODE_CUBES, new int[] { 22, 23, 24 }), new ChannelMapping(ChannelMapping.MODE_CUBES, new int[] { 25, 26, 27 }), new ChannelMapping(ChannelMapping.MODE_CUBES, new int[] { 28, 29, 30 }), new ChannelMapping(ChannelMapping.MODE_CUBES, new int[] { 31, 32, 33 }), new ChannelMapping(ChannelMapping.MODE_CUBES, new int[] { 34, 35, 36 }), // new ChannelMapping(ChannelMapping.MODE_CUBES, new int[] { 1,1,1}), // 30 J3 * // new ChannelMapping(ChannelMapping.MODE_CUBES, new int[] { 1,1,1}), // 30 J4 //ORIG * // new ChannelMapping(ChannelMapping.MODE_CUBES, new int[] { 37, 38, 39}), // 30 J7 * // new ChannelMapping(ChannelMapping.MODE_CUBES, new int[] { 40, 41, 42}), // 30 J8 * // new ChannelMapping(ChannelMapping.MODE_CUBES, new int[] { 43, 44, 45}), // 30 J13 (not working) // new ChannelMapping(ChannelMapping.MODE_CUBES, new int[] { 46, 47, 48}), // 30 J14 (unplugged) // new ChannelMapping(ChannelMapping.MODE_CUBES, new int[] { 49, 50, 51}), // 30 J15 (unplugged) // new ChannelMapping(ChannelMapping.MODE_CUBES, new int[] { 52, 53, 54}), // 30 J16 }), // new PandaMapping( // "10.200.1.31", new ChannelMapping[] { // new ChannelMapping(ChannelMapping.MODE_CUBES, new int[] { 65, 66}), // J3 // new ChannelMapping(ChannelMapping.MODE_CUBES, new int[] { 1,1}), // J4 // new ChannelMapping(ChannelMapping.MODE_CUBES, new int[] { 55, 56}), // 30 J7 // new ChannelMapping(ChannelMapping.MODE_CUBES, new int[] { 57, 58}), // J8 // new ChannelMapping(ChannelMapping.MODE_CUBES, new int[] { 59, 60}), // J13 // new ChannelMapping(ChannelMapping.MODE_CUBES, new int[] { 61, 62}), // 30 J14 // new ChannelMapping(ChannelMapping.MODE_CUBES, new int[] { 63, 64}), // J15 // new ChannelMapping(ChannelMapping.MODE_CUBES, new int[] { 1,1}), // J16 // }), // new PandaMapping( // "10.200.1.32", new ChannelMapping[] { // new ChannelMapping(ChannelMapping.MODE_CUBES, new int[] { }), // J3 // new ChannelMapping(ChannelMapping.MODE_CUBES, new int[] { }), // J4 // new ChannelMapping(ChannelMapping.MODE_CUBES, new int[] { 67, 68}), // 30 J7 // new ChannelMapping(ChannelMapping.MODE_CUBES, new int[] { 69, 70}), // J8 // new ChannelMapping(ChannelMapping.MODE_CUBES, new int[] { }), // J13 // new ChannelMapping(ChannelMapping.MODE_CUBES, new int[] { }), // 30 J14 // new ChannelMapping(ChannelMapping.MODE_CUBES, new int[] { }), // J15 // new ChannelMapping(ChannelMapping.MODE_CUBES, new int[] { }), // J16 // }), }; } class TowerMapping { public final float x, y, z; public final CubeMapping[] cubeMappings; TowerMapping(float x, float y, float z, CubeMapping[] cubeMappings) { this.x = x; this.y = y; this.z = z; this.cubeMappings = cubeMappings; } } class CubeMapping { public final float dx, dz, ry; public final Cube.Wiring wiring; CubeMapping(float dx, float dz, Cube.Wiring wiring) { this(dx, dz, 0., wiring); } CubeMapping(float dx, float dz, float ry) { this(dz, dz, ry, Cube.Wiring.FRONT_LEFT); } CubeMapping(float dx, float dz, float ry, Cube.Wiring wiring) { this.dx = dx; this.dz = dz; this.ry = ry; this.wiring = wiring; } } class StaggeredTower { public final float x, y, z, r; public final int n; public final Cube.Wiring[] wiring; StaggeredTower(float _x, float _y, float _z, float _r, int _n) { this(_x, _y, _z, _r, _n, new Cube.Wiring[]{}); } StaggeredTower(float _x, float _y, float _z, float _r, int _n, Cube.Wiring[] _wiring) { x=_x; y=_y; z=_z; r=_r; n=_n; wiring=_wiring;} } /** * Each panda board has an IP address and a fixed number of channels. The channels * each have a fixed number of pixels on them. Whether or not that many physical * pixels are connected to the channel, we still send it that much data. */ class PandaMapping { // How many channels are on the panda board public final static int CHANNELS_PER_BOARD = 8; // How many total pixels on the whole board public final static int PIXELS_PER_BOARD = ChannelMapping.PIXELS_PER_CHANNEL * CHANNELS_PER_BOARD; final String ip; final ChannelMapping[] channelList = new ChannelMapping[CHANNELS_PER_BOARD]; PandaMapping(String ip, ChannelMapping[] rawChannelList) { this.ip = ip; // Ensure our array is the right length and has all valid items in it for (int i = 0; i < channelList.length; ++i) { channelList[i] = (i < rawChannelList.length) ? rawChannelList[i] : new ChannelMapping(); if (channelList[i] == null) { channelList[i] = new ChannelMapping(); } } } } /** * Each channel on a pandaboard can be mapped in a number of modes. The typical is * to a series of connected cubes, but we also have special mappings for the bass box, * the speaker enclosures, and the DJ booth floor. * * This class is just the mapping meta-data. It sanitizes the input to make sure * that the cubes and objects being referenced actually exist in the model. * * The logic for how to encode the pixels is contained in the PandaDriver. */ class ChannelMapping { // How many cubes per channel xc_PB is configured for public final static int CUBES_PER_CHANNEL = 4; // How many total pixels on each channel public final static int PIXELS_PER_CHANNEL = Cube.POINTS_PER_CUBE * CUBES_PER_CHANNEL; public static final int MODE_NULL = 0; public static final int MODE_CUBES = 1; public static final int MODE_BASS = 2; public static final int MODE_SPEAKER = 3; public static final int MODE_STRUTS_AND_FLOOR = 4; public static final int MODE_INVALID = 5; public static final int NO_OBJECT = -1; final int mode; final int[] objectIndices = new int[CUBES_PER_CHANNEL]; ChannelMapping() { this(MODE_NULL); } ChannelMapping(int mode) { this(mode, new int[]{}); } ChannelMapping(int mode, int rawObjectIndex) { this(mode, new int[]{ rawObjectIndex }); } ChannelMapping(int mode, int[] rawObjectIndices) { if (mode < 0 || mode >= MODE_INVALID) { throw new RuntimeException("Invalid channel mapping mode: " + mode); } if (mode == MODE_SPEAKER) { if (rawObjectIndices.length != 1) { throw new RuntimeException("Speaker channel mapping mode must specify one speaker index"); } int speakerIndex = rawObjectIndices[0]; if (speakerIndex < 0 || speakerIndex >= glucose.model.speakers.size()) { throw new RuntimeException("Invalid speaker channel mapping: " + speakerIndex); } } else if ((mode == MODE_STRUTS_AND_FLOOR) || (mode == MODE_BASS) || (mode == MODE_NULL)) { if (rawObjectIndices.length > 0) { throw new RuntimeException("Bass/floor/null mappings cannot specify object indices"); } } else if (mode == MODE_CUBES) { for (int rawCubeIndex : rawObjectIndices) { if (glucose.model.getCubeByRawIndex(rawCubeIndex) == null) { throw new RuntimeException("Non-existing cube specified in cube mapping: " + rawCubeIndex); } } } this.mode = mode; for (int i = 0; i < objectIndices.length; ++i) { objectIndices[i] = (i < rawObjectIndices.length) ? rawObjectIndices[i] : NO_OBJECT; } } }