/** * DOUBLE BLACK DIAMOND DOUBLE BLACK DIAMOND * * //\\ //\\ //\\ //\\ * ///\\\ ///\\\ ///\\\ ///\\\ * \\\/// \\\/// \\\/// \\\/// * \\// \\// \\// \\// * * EXPERTS ONLY!! EXPERTS ONLY!! * * This file implements the mapping functions needed to lay out the physical * cubes and the output ports on the panda board. It should only be modified * when physical changes or tuning is being done to the structure. */ public Model buildModel() { // Shorthand helpers for specifying wiring more quickly final Cube.Wiring WFL = Cube.Wiring.FRONT_LEFT; final Cube.Wiring WFR = Cube.Wiring.FRONT_RIGHT; final Cube.Wiring WRL = Cube.Wiring.REAR_LEFT; final Cube.Wiring WRR = Cube.Wiring.REAR_RIGHT; // Utility value if you need the height of a cube shorthand final float CH = Cube.EDGE_HEIGHT; // Positions for the bass box final float BBY = BassBox.EDGE_HEIGHT + BoothFloor.PLEXI_WIDTH; final float BBX = 56; final float BBZ = 2; // The model is represented as an array of towers. The cubes in the tower // are represenented relatively. Each tower has an x, y, z reference position, // which is typically the base cube's bottom left corner. // // Following that is an array of floats. A 2-d array contains an x-offset // and a z-offset from the previous reference position. Typically the first cube // will just be {0, 0}. Each successive cube uses the position of the previous // cube as its reference. // // A 3-d array contains an x-offset, a z-offset, and a rotation about the // y-axis. // // The cubes automatically increment their y-position by Cube.EDGE_HEIGHT. // To-Do: (Mark Slee, Alex Green, or Ben Morrow): The Cube # is determined by the order in this list. "raw object index" is serialized by running through towermapping and then individual cube mapping below. // We can do better than this. The raw object index should be obvious from the code-- looking through the rendered simulation and counting through cubes in mapping mode is grossly inefficient. TowerMapping[] towerCubes = new TowerMapping[] { //back left cubes: temp Channel 1 new TowerMapping(0, 3*Cube.EDGE_HEIGHT, 72, new CubeMapping[] { new CubeMapping(0, 14, -45 , WRL), // #1 new CubeMapping(10, -12, -20, WFL), //#2 new CubeMapping(5, 9, 45, WRR), //#3 }), //back left cube tower: Channel 2 new TowerMapping(0, Cube.EDGE_HEIGHT, 70, new CubeMapping[] { new CubeMapping(18, -2.5, 45, WRL), //#4 new CubeMapping(15, -6, 45, WFR), //#5 new CubeMapping(-6 , 7, 5, WRR), //#6 new CubeMapping(18, 11, -5, WFL) }), //second from left back tower: Channel 3 new TowerMapping(31, Cube.EDGE_HEIGHT, 73.5, new CubeMapping[] { new CubeMapping( 12.5, 5.5 , 10 , WRR), new CubeMapping( 16.5, 2.5 , 30, WRR), new CubeMapping( 16.5, 3, 10, WRR), new CubeMapping(.5, 4.5, -10 , WFL) } ), //center tower, Channel 4 new TowerMapping(106, Cube.EDGE_HEIGHT, 84, new CubeMapping[] { new CubeMapping( -3.5, -2, 10, WFL), new CubeMapping( -11, 5, 30, WFR), new CubeMapping( 13.5, 2, 15, WRR), new CubeMapping(20.75, -4, 35 , WRL) } ), //second from back right tower, Channel 5 new TowerMapping(160, Cube.EDGE_HEIGHT, 78, new CubeMapping[] { new CubeMapping( -31.5, -.5 , 5 , WFR), new CubeMapping( 7, -.5, 60, WRL), new CubeMapping( -5.5, -3, 0, WFR), new CubeMapping(22 , 2 , 30 , WRL) }), //back right cubes: temp Channel 6 new TowerMapping(201, Cube.EDGE_HEIGHT, 72, new CubeMapping[] { new CubeMapping(7.5, 6, 25, WRL), new CubeMapping(-4.5, -0.5, 18, WFR), new CubeMapping(8.5, .5, 30, WRL), new CubeMapping(-7, -14, 10, WFR) }), //tower to the right of BASS BOX new TowerMapping (192, Cube.EDGE_HEIGHT, 40, new CubeMapping[] { new CubeMapping(-6, 4, -10, WRL), new CubeMapping(5 ,5 , 5, WFR ), new CubeMapping(-2, .5 , -3, WFL), new CubeMapping(-10, 5.5 , -20, WRR ) }), //end right tower in middle, right of previous tower //new TowerMapping (214, Cube.EDGE_HEIGHT, 37, new CubeMapping[] { //new CubeMapping(10,0 , 50, WRR), //new CubeMapping(5 ,5 , 65, WFL) //}), // // DJ booth, from back left to back right new TowerMapping(BBX, BBY, BBZ, new CubeMapping[] { new CubeMapping(3, 28, 3, WFL), new CubeMapping(-4, -8, 10, WFR), new CubeMapping(-15, 8, 40, WFR) }), new TowerMapping(BBX, BBY, BBZ, new CubeMapping[] { new CubeMapping(-7.25, 7.5, -25, WFR), new CubeMapping(7.5, -15.75, 12, WRL), }), new TowerMapping(BBX, BBY, BBZ, new CubeMapping[] { new CubeMapping(19.625, 5.375, -22, WFR), new CubeMapping(8, -14.5, 10, WRR), }), new TowerMapping(BBX, BBY, BBZ, new CubeMapping[] { new CubeMapping(48, 4.75, -35, WRL), new CubeMapping(8, -15, 10, WRR), }), new TowerMapping(BBX, BBY, BBZ, new CubeMapping[] { new CubeMapping(78.75, 3.75, -28, WRR), new CubeMapping(8, -15, 10, WRR), }), // next two are right DJ channel new TowerMapping(BBX, BBY, BBZ, new CubeMapping[] { new CubeMapping(105, 20.5, 20, WRR), new CubeMapping(6, -6, 30, WFR), }), new TowerMapping(BBX, BBY, BBZ, new CubeMapping[] { new CubeMapping(104.75, 0, -27, WRL), new CubeMapping(8, -15, 10, WFL), }), }; // Single cubes can be constructed directly here if you need them Cube[] singleCubes = new Cube[] { // Back left channel behind speaker new Cube(15, int( Cube.EDGE_HEIGHT), 39, 0, 10, 0, WRL), // Top left Channel Above DJ booth //new Cube(35, int(5*Cube.EDGE_HEIGHT ), 52, 0, 10, 0, WRR), //new Cube(56, int(5*Cube.EDGE_HEIGHT ), 69, 0, 10, 0, WFL), //new Cube(76, int(5*Cube.EDGE_HEIGHT ), 61, 0, -45, 0, WRL), // Next channel to the right, same height //new Cube(85, int(5*Cube.EDGE_HEIGHT ), 77, 0, 20, 0, WRL), //new Cube(92, int(6*Cube.EDGE_HEIGHT ), 63, 0,20, 0, WRR), //new Cube(86, int(6*Cube.EDGE_HEIGHT ), 47, 0, -45, 0, WRL), //new Cube(123, int(6*Cube.EDGE_HEIGHT ), 31, 0, 20, 0, WFR), // Next channel to right, same height //new Cube(111, int(5*Cube.EDGE_HEIGHT ), 79, 0, 30, 0, WRL), //new Cube(125, int(6*Cube.EDGE_HEIGHT ), 76, 0,27, 0, WRL), //new Cube(144, int(5*Cube.EDGE_HEIGHT ), 44, 0, 45, 0, WRR), //new Cube(134, int(5*Cube.EDGE_HEIGHT ), 42, 0, 45, 0, WRL), // Next channel to right new Cube(185, int(4*Cube.EDGE_HEIGHT ), 73, 0, -45, 0, WRR), //new Cube(170, int(5*Cube.EDGE_HEIGHT ), 58, 0,40, 0, WRL), //new Cube(158, int(6*Cube.EDGE_HEIGHT ), 34, 0, 40, 0, WFR), //new Cube(130, int(6*Cube.EDGE_HEIGHT ), 10, 0, -5, 30, WRL), // Next channel highest to the right //new Cube(203, int(5*Cube.EDGE_HEIGHT ), 55, 0, 35, 0, WRR), //new Cube(174, int(5*Cube.EDGE_HEIGHT ), 32, 0,35, 0, WFR), //new Cube(178, int(6.5*Cube.EDGE_HEIGHT ), 16, 0, 20 , 30, WRL), //new Cube(212, int(6.5*Cube.EDGE_HEIGHT ), 23, 0, 20 ,30, WRR), // Last channel //new Cube(204, int(5*Cube.EDGE_HEIGHT ), 28, 0, 25, 0, WFR), //new Cube(185, int(6*Cube.EDGE_HEIGHT ), 38, 0,40, 0, WRR), // New cubes above DJ deck new Cube(BBX + 78.5, BBY + 2*Cube.EDGE_HEIGHT, BBZ, 0, 10, 0, WRR), new Cube(BBX + 49.5, BBY + 2*Cube.EDGE_HEIGHT, BBZ - 7, 0, 10, 0, WRR), new Cube(BBX + 13, BBY + 2*Cube.EDGE_HEIGHT, BBZ + 11, 0, -30, 0, WRL), new Cube(BBX - 15, BBY + 2*Cube.EDGE_HEIGHT, BBZ + 30, 0, -35, 0, WRR), // New cubes above DJ deck at crazy angles new Cube(BBX - 5, BBY + 3*Cube.EDGE_HEIGHT, BBZ + 15.5, 0, -15, 0, WRL), new Cube(BBX + 27, BBY + 3*Cube.EDGE_HEIGHT, BBZ + 12.5, 0, -18, -15, WRR), new Cube(BBX + 59, BBY + 3*Cube.EDGE_HEIGHT + 4, BBZ + 12.5, -12, 10, -10, WRL), new Cube(BBX + 93, BBY + 3*Cube.EDGE_HEIGHT + 7, BBZ + 20.5, -15, 20, -35, WRR), // New cubes on right side of DJ deck new Cube(161, BBY + 2*Cube.EDGE_HEIGHT, 15, 0, -40, 0, WFR), new Cube(161, BBY + 3*Cube.EDGE_HEIGHT, 24, 0, -30, 0, WFL), new Cube(165, BBY + 4*Cube.EDGE_HEIGHT, 41, 0, 5, 0, WFR), // New cubes top back left new Cube(BBX + 32, 5*Cube.EDGE_HEIGHT, BBZ + BassBox.EDGE_DEPTH + 7, 0, -25, 0, WFR), new Cube(BBX + 5.5, 5*Cube.EDGE_HEIGHT, BBZ + BassBox.EDGE_DEPTH +7, 0, -25, 0, WFL), new Cube(BBX - 23, 5*Cube.EDGE_HEIGHT, BBZ + BassBox.EDGE_DEPTH + 11, 0, -25, 0, WFL), new Cube(BBX - 33, 5*Cube.EDGE_HEIGHT + 8, BBZ +BassBox.EDGE_DEPTH- 29, 0, 10, 0, WFL), // On top of previous channel new Cube(BBX + 22, 6*Cube.EDGE_HEIGHT, BBZ + BassBox.EDGE_DEPTH , 0, 5, 0, WRL), new Cube(BBX + 27, 6*Cube.EDGE_HEIGHT - 13, BBZ + BassBox.EDGE_DEPTH- 25, 0, 3, -20, WRR), new Cube(BBX +5, 6*Cube.EDGE_HEIGHT - 13, BBZ + BassBox.EDGE_DEPTH -27, 0, 5, -15, WRL), new Cube(BBX - 11, 6*Cube.EDGE_HEIGHT -1.5, BBZ +BassBox.EDGE_DEPTH - 11, 0, 30, 0, WRR), // Top center new Cube(BBX +37, 6*Cube.EDGE_HEIGHT, BBZ + BassBox.EDGE_DEPTH +13 , 0, 15, 0, WRR), new Cube(BBX + 64, 6*Cube.EDGE_HEIGHT, BBZ + BassBox.EDGE_DEPTH + 25, 0, 15, 0, WFR), new Cube(BBX + 64, 6*Cube.EDGE_HEIGHT - 3, BBZ + BassBox.EDGE_DEPTH -4 , 0, 0, -30, WRL), new Cube(BBX + 87.5, 6*Cube.EDGE_HEIGHT + 13, BBZ +BassBox.EDGE_DEPTH - 10, 0, 0, 0, WRL), // Top right new Cube(BBX + 76, 107.5, BBZ + BassBox.EDGE_DEPTH + 23, 0, -40, 0, WRR), new Cube(BBX + 98, 129, BBZ + BassBox.EDGE_DEPTH - 5, 0, 10, 0, WRR), new Cube(BBX + 104, 107.5, BBZ + BassBox.EDGE_DEPTH + 17, 0, -35, 0, WRR), new Cube(BBX + 129, 107.5, BBZ +BassBox.EDGE_DEPTH +10, 0, -35, 0, WFL), new Cube(179, 4*Cube.EDGE_HEIGHT, BBZ + BassBox.EDGE_DEPTH + 14,0, -20, 0 , WFR), // Lonely cube at top left, one cube channel new Cube(BBX - 36, 4*Cube.EDGE_HEIGHT + 8, BBZ +BassBox.EDGE_DEPTH- 38, 0, 10, 0, WFL) // new Cube(x, y, z, rx, ry, rz, wiring), }; // The bass box! BassBox bassBox = new BassBox(BBX, 0, BBZ); // The speakers! List speakers = Arrays.asList(new Speaker[] { // Each speaker parameter is x, y, z, rotation, the left speaker comes first // new Speaker(-12, 6, 0, 15), // new Speaker(TRAILER_WIDTH - Speaker.EDGE_WIDTH + 8, 6, 3, -15) }); ////////////////////////////////////////////////////////////////////// // BENEATH HERE SHOULD NOT REQUIRE ANY MODIFICATION!!!! // ////////////////////////////////////////////////////////////////////// // These guts just convert the shorthand mappings into usable objects ArrayList towerList = new ArrayList(); ArrayList tower; Cube[] cubes = new Cube[80]; int cubeIndex = 1; float px, pz, ny; for (TowerMapping tm : towerCubes) { px = tm.x; ny = tm.y; pz = tm.z; tower = new ArrayList(); for (CubeMapping cm : tm.cubeMappings) { tower.add(cubes[cubeIndex++] = new Cube(px = px + cm.dx, ny, pz = pz + cm.dz, 0, cm.ry, 0, cm.wiring)); ny += Cube.EDGE_HEIGHT; } towerList.add(new Tower(tower)); } for (Cube cube : singleCubes) { cubes[cubeIndex++] = cube; } return new Model(towerList, cubes, bassBox, speakers); } /** * This function maps the panda boards. We have an array of them, each has * an IP address and a list of channels. */ public PandaMapping[] buildPandaList() { final int LEFT_SPEAKER = 0; final int RIGHT_SPEAKER = 1; // 8 channels map to: 3, 4, 7, 8, 13, 14, 15, 16. return new PandaMapping[] { new PandaMapping( "10.200.1.30", new ChannelMapping[] { new ChannelMapping(ChannelMapping.MODE_CUBES, new int[] { 39, 40, 41, 42 }), // 30 J3 * new ChannelMapping(ChannelMapping.MODE_CUBES, new int[] { 37, 38, 36, 35}), // 30 J4 //ORIG * new ChannelMapping(ChannelMapping.MODE_CUBES, new int[] { }), // 30 J7 * new ChannelMapping(ChannelMapping.MODE_CUBES, new int[] { 16, 17, 18, 19}), // 30 J8 * new ChannelMapping(ChannelMapping.MODE_CUBES, new int[] { }), // 30 J13 (not working) new ChannelMapping(ChannelMapping.MODE_CUBES, new int[] { }), // 30 J14 (unplugged) new ChannelMapping(ChannelMapping.MODE_CUBES, new int[] { }), // 30 J15 (unplugged) new ChannelMapping(ChannelMapping.MODE_CUBES, new int[] { 53, 54, 55, 72 }), // 30 J16 }), new PandaMapping( "10.200.1.29", new ChannelMapping[] { new ChannelMapping(ChannelMapping.MODE_CUBES, new int[] { }), // 29 J3 (not connected) new ChannelMapping(ChannelMapping.MODE_CUBES, new int[] { }), // 29 J4 (not connected) new ChannelMapping(ChannelMapping.MODE_CUBES, new int[] { 28, 29, 30, 2}), // 29 J7 new ChannelMapping(ChannelMapping.MODE_CUBES, new int[] { 33, 34, 32, 31}), // 29 J8 //XXX new ChannelMapping(ChannelMapping.MODE_CUBES, new int[] { }), // 29 J13 //XX //bassbox (not working) new ChannelMapping(ChannelMapping.MODE_CUBES, new int[] { }), // 29 J14 (not working) new ChannelMapping(ChannelMapping.MODE_CUBES, new int[] { 12, 13, 14, 15 }), // 29 J15 new ChannelMapping(ChannelMapping.MODE_CUBES, new int[] { 8, 9, 10, 11 }), // 29 J16 }), new PandaMapping( "10.200.1.28", new ChannelMapping[] { new ChannelMapping(ChannelMapping.MODE_CUBES, new int[] { 60, 61, 62, 63 }), // 28 J3 new ChannelMapping(ChannelMapping.MODE_CUBES, new int[] { }), // 28 J4 new ChannelMapping(ChannelMapping.MODE_CUBES, new int[] { 45, 46, 47, 48 }), // 28 J7 new ChannelMapping(ChannelMapping.MODE_CUBES, new int[] { }), // 28 J8 new ChannelMapping(ChannelMapping.MODE_CUBES, new int[] { 4, 5, 6, 7}), // 28 J13 new ChannelMapping(ChannelMapping.MODE_CUBES, new int[] { 64, 65, 66, 67 }), // 28 J14 new ChannelMapping(ChannelMapping.MODE_CUBES, new int[] { 68, 69, 70, 71 }), // 28 J15 new ChannelMapping(ChannelMapping.MODE_CUBES, new int[] { 49, 50, 51, 52}), // 28 J16 }), new PandaMapping( "10.200.1.31", new ChannelMapping[] { new ChannelMapping(ChannelMapping.MODE_CUBES, new int[] { }), // 31 J3 new ChannelMapping(ChannelMapping.MODE_CUBES, new int[] { }), // 31 J4 new ChannelMapping(ChannelMapping.MODE_CUBES, new int[] { 73}), // 31 J7 new ChannelMapping(ChannelMapping.MODE_CUBES, new int[] { 24, 25, 26, 27}), // 31 J8 new ChannelMapping(ChannelMapping.MODE_CUBES, new int[] { }), // 31 J13 new ChannelMapping(ChannelMapping.MODE_CUBES, new int[] { 56, 57, 58, 59}), // 31 J14 new ChannelMapping(ChannelMapping.MODE_CUBES, new int[] { 20, 21, 22, 23}), // 31 J15 new ChannelMapping(ChannelMapping.MODE_CUBES, new int[] { }), // 31 J16 }), }; } class TowerMapping { public final float x, y, z; public final CubeMapping[] cubeMappings; TowerMapping(float x, float y, float z, CubeMapping[] cubeMappings) { this.x = x; this.y = y; this.z = z; this.cubeMappings = cubeMappings; } } class CubeMapping { public final float dx, dz, ry; public final Cube.Wiring wiring; CubeMapping(float dx, float dz, Cube.Wiring wiring) { this(dx, dz, 0, wiring); } CubeMapping(float dx, float dz, float ry) { this(dz, dz, ry, Cube.Wiring.FRONT_LEFT); } CubeMapping(float dx, float dz, float ry, Cube.Wiring wiring) { this.dx = dx; this.dz = dz; this.ry = ry; this.wiring = wiring; } } /** * Each panda board has an IP address and a fixed number of channels. The channels * each have a fixed number of pixels on them. Whether or not that many physical * pixels are connected to the channel, we still send it that much data. */ class PandaMapping { // How many channels are on the panda board public final static int CHANNELS_PER_BOARD = 8; // How many total pixels on the whole board public final static int PIXELS_PER_BOARD = ChannelMapping.PIXELS_PER_CHANNEL * CHANNELS_PER_BOARD; final String ip; final ChannelMapping[] channelList = new ChannelMapping[CHANNELS_PER_BOARD]; PandaMapping(String ip, ChannelMapping[] rawChannelList) { this.ip = ip; // Ensure our array is the right length and has all valid items in it for (int i = 0; i < channelList.length; ++i) { channelList[i] = (i < rawChannelList.length) ? rawChannelList[i] : new ChannelMapping(); if (channelList[i] == null) { channelList[i] = new ChannelMapping(); } } } } /** * Each channel on a pandaboard can be mapped in a number of modes. The typical is * to a series of connected cubes, but we also have special mappings for the bass box, * the speaker enclosures, and the DJ booth floor. * * This class is just the mapping meta-data. It sanitizes the input to make sure * that the cubes and objects being referenced actually exist in the model. * * The logic for how to encode the pixels is contained in the PandaDriver. */ class ChannelMapping { // How many cubes per channel xc_PB is configured for public final static int CUBES_PER_CHANNEL = 4; // How many total pixels on each channel public final static int PIXELS_PER_CHANNEL = Cube.POINTS_PER_CUBE * CUBES_PER_CHANNEL; public static final int MODE_NULL = 0; public static final int MODE_CUBES = 1; public static final int MODE_BASS = 2; public static final int MODE_SPEAKER = 3; public static final int MODE_STRUTS_AND_FLOOR = 4; public static final int MODE_INVALID = 5; public static final int NO_OBJECT = -1; final int mode; final int[] objectIndices = new int[CUBES_PER_CHANNEL]; ChannelMapping() { this(MODE_NULL); } ChannelMapping(int mode) { this(mode, new int[]{}); } ChannelMapping(int mode, int rawObjectIndex) { this(mode, new int[]{ rawObjectIndex }); } ChannelMapping(int mode, int[] rawObjectIndices) { if (mode < 0 || mode >= MODE_INVALID) { throw new RuntimeException("Invalid channel mapping mode: " + mode); } if (mode == MODE_SPEAKER) { if (rawObjectIndices.length != 1) { throw new RuntimeException("Speaker channel mapping mode must specify one speaker index"); } int speakerIndex = rawObjectIndices[0]; if (speakerIndex < 0 || speakerIndex >= glucose.model.speakers.size()) { throw new RuntimeException("Invalid speaker channel mapping: " + speakerIndex); } } else if ((mode == MODE_STRUTS_AND_FLOOR) || (mode == MODE_BASS) || (mode == MODE_NULL)) { if (rawObjectIndices.length > 0) { throw new RuntimeException("Bass/floor/null mappings cannot specify object indices"); } } else if (mode == MODE_CUBES) { for (int rawCubeIndex : rawObjectIndices) { if (glucose.model.getCubeByRawIndex(rawCubeIndex) == null) { throw new RuntimeException("Non-existing cube specified in cube mapping: " + rawCubeIndex); } } } this.mode = mode; for (int i = 0; i < objectIndices.length; ++i) { objectIndices[i] = (i < rawObjectIndices.length) ? rawObjectIndices[i] : NO_OBJECT; } } }