X-Git-Url: https://git.piment-noir.org/?a=blobdiff_plain;f=TP3%2Fexo2%2Ftp3_exo2.py;h=7ceadb1b8185610e7c5d66577261a187324bfe7f;hb=26fd2383c38aa862fd24bdfadf3ba219fa1cd4dd;hp=4ca092ddd0015126efe66d2a3b02fceb8b444433;hpb=c60d868ed5752a8c5adef46881c6a8d792351370;p=TP_AA.git diff --git a/TP3/exo2/tp3_exo2.py b/TP3/exo2/tp3_exo2.py index 4ca092d..7ceadb1 100755 --- a/TP3/exo2/tp3_exo2.py +++ b/TP3/exo2/tp3_exo2.py @@ -74,10 +74,11 @@ def perceptron_nobias(X, Y): classification_error = 1 while not classification_error == 0: classification_error = 0 - for i in range(X.shape[0]): - if Y[i] * np.dot(w, X[i]) <= 0: + for x, y in zip(X, Y): + if y * np.dot(w, x) <= 0: classification_error += 1 - w = w + Y[i] * X[i] + w = w + y * x + print(classification_error) return w @@ -102,7 +103,7 @@ def apply_plongement(sample, p): def f_from_k(coeffs, support_set, k, x): output = 0 for c, s in zip(coeffs, support_set): - output += c * s[0] * k(s[1], x) + output += c * s[1] * k(s[0], x) return output @@ -111,25 +112,32 @@ def k1(X1, X2): + X1[0] * X1[1] * X2[0] * X2[1] + X1[1]**2 * X2[1]**2 -def kg(x, y, sigma=10): +def kg(x, y): + # sigma = 20 # do not converge + # sigma = 10 # do not converge + sigma = 1 + # sigma = 0.5 # overfitting + # sigma = 0.2 # overfitting return np.exp(-((x[0] - y[0])**2 + (x[1] - y[1])**2) / sigma**2) def perceptron_k(X, Y, k): coeffs = [] - support_set = np.array([]) + support_set = [] # Go in the loop at least one time classification_error = 1 while not classification_error == 0: classification_error = 0 - for i in range(X.shape[0]): - if Y[i] * f_from_k(coeffs, support_set, k, X[i]) <= 0: + for x, y in zip(X, Y): + if y * f_from_k(coeffs, support_set, k, x) <= 0: + if x not in support_set: + support_set.append((x, y)) + coeffs.append(1) + else: + coeffs[support_set.index((x, y))] += 1 classification_error += 1 - np.append(support_set, X[i]) - coeffs.append(1) - else: - coeffs[len(coeffs) - 1] = coeffs[len(coeffs) - 1] + 1 - return np.array(coeffs), support_set + print(classification_error) + return np.array(coeffs), np.array(support_set) def f(w, x, y): @@ -137,19 +145,23 @@ def f(w, x, y): pl.scatter(X[:, 0], X[:, 1], c=Y, s=training_set_size) -pl.title(u"Perceptron - hyperplan") +pl.title(u"Perceptron - prolontaged hyperplan") -# coeffs, support_set = perceptron_k(X, Y, k1) -# coeffs, support_set = perceptron_k(X, Y, kg) +# k = k1 +# coeffs, support_set = perceptron_k(X, Y, k) +k = kg +coeffs, support_set = perceptron_k(X, Y, k) res = training_set_size -# for c, X in zip(coeffs, support_set): -# pl.plot(X[0], 'xr') - -X = apply_plongement(X, plongement_phi) -w = perceptron_nobias(X, Y) for x in range(res): for y in range(res): - if abs(f(w, -3 / 2 + 3 * x / res, -3 / 2 + 3 * y / res)) < 0.01: - pl.plot(-3 / 2 + 3 * x / res, -3 / 2 + 3 * y / res, 'xb') + if abs(f_from_k(coeffs, support_set, k, [-3 / 2 + 3 * x / res, -3 / 2 + 3 * y / res])) < 0.01: + pl.plot(-3 / 2 + 3 * x / res, -3 / 2 + 3 * y / res, 'xr') + +# X = apply_plongement(X, plongement_phi) +# w = perceptron_nobias(X, Y) +# for x in range(res): +# for y in range(res): +# if abs(f(w, -3 / 2 + 3 * x / res, -3 / 2 + 3 * y / res)) < 0.01: +# pl.plot(-3 / 2 + 3 * x / res, -3 / 2 + 3 * y / res, 'xb') pl.show()