X-Git-Url: https://git.piment-noir.org/?a=blobdiff_plain;f=rapport%2FProjetOptimRO.tex;h=8919c6d6df0e5b0a2d1c95b306983bd545bf3d6b;hb=fc31b3903fc6c8ffd09fe0886174ad47b001ab90;hp=adf023a43c3bc050a2ae6d5cd48f4992e86923ff;hpb=09448b62fdf29dbdf5137bafb6120d36f2e97ff4;p=Projet_Recherche_Operationnelle.git diff --git a/rapport/ProjetOptimRO.tex b/rapport/ProjetOptimRO.tex index adf023a..8919c6d 100644 --- a/rapport/ProjetOptimRO.tex +++ b/rapport/ProjetOptimRO.tex @@ -23,6 +23,7 @@ \usepackage{enumitem} \usepackage{algorithm2e} \usepackage{algorithmic} +\usepackage{float} %%%%%Marges & en-t\^etes @@ -775,8 +776,8 @@ Dans les deux cas, les équations de quasi-Newton forment un système sous-déte \newline Une stratégie commune est de calculer $ (x_{k+1},\lambda_{k+1},\mu_{k+1}) $ pour une matrice $ H_k $ donnée et faire une mise à jour de $ H_k $ de rang 1 ou 2 : $$ H_{k+1} = H_k + U_k $$ - -\subsubsection{Mises à jour DFP et BFGS} +% \subsubsection{Mises à jour DFP et BFGS} +Les méthodes de mise à jour DFP et BFGS suivent par exemple cette stratégie. \subsection{Exemple d'utilisation de PQS} @@ -802,6 +803,7 @@ $$ = ((2x,2y,0),(2x,0,2z)). $$ \newline Le gradient du Lagrangien $ L $ : $$ \nabla L((x,y,z),(\lambda_1,\lambda_2)) = \nabla J(x,y,z) + \lambda_1 \nabla g_1(x,y,z) + \lambda_2 \nabla g_2(x,y,z)) $$ +$$ = (2x(1 + \lambda_1 + \lambda_2),2y(1 + \lambda_1),2z(1 + \lambda_2)) $$ \newline La matrice hessienne de $ J $ : $$ H[J](x,y,z) = \begin{pmatrix} @@ -816,87 +818,244 @@ La matrice hessienne de $ J $ : $$ H[J](x,y,z) = \end{pmatrix} = 2Id_{\mathbb{R}^3} $$ On en déduit que $ H[J](x,y,z) $ est inversible et que $ H[J](x,y,z)^{-1} = \frac{1}{2}Id_{\mathbb{R}^3} $. -\subsection{Trace d'éxécution de l'algorithme PQS} +\newpage + +\subsection{Trace d'éxécution de l'algorithme pour la méthode de Newton} + +\begin{center} + \includegraphics[scale=0.2]{sphere2.jpg} \\ + \footnotesize{ + \small \it Fig : Exemple de la sphère \\ + \vspace*{0.5cm} + } +\end{center} En utilisant le problème $ \mathcal{P} $ précédent : + +\textit{Entrées} : $ J $ et $ g $ de classe $ \mathcal{C}^2 $, $ \varepsilon = 0.01 $, $ (x_0,y_0,z_0) = (100, 100 ,0)$ et $(\lambda_{0_1},\lambda_{0_2}) = (1 , 1)$, les rayons : $r = 100$ et $r_1 = r_2 = 10$. \newline -\textit{Entrées} : $ J $ et $ g $ de classe $ \mathcal{C}^2 $, $ \varepsilon = 0.01 $, $ (x_0,y_0,z_0) = (80, 20, 60)$ et $(\lambda_{0_1},\lambda_{0_2}) = (1, 1)$, les rayons : $r = 40$ et $r_1 = r_2 = 10$. -\newline -Calcul du Lagrangien $ L $ de $ \mathcal{P} $ en $ (x_0,y_0,z_0)$ : -\newline -$ L((80,20,60),(1,1)) = 80^2 + 20^2 + 60^2 -60^2 + 1 * (80^2 +20y^2 - 30^2) + \lambda_2(80^2 + 60^2 -30^2), $ +Calcul du Lagrangien $ L $ de $ \mathcal{P} $ en $(x_0,y_0,z_0)$ : \newline -$ L((80,20,60),(1,1)) = 6400 + 400 + 3600 - 3600 + (6400 + 400 - 900) + (6400 + 3600 -900), $ +$ L((100,100,0),(1,1)) = 100^2 + 100^2 + 0^2 - 100^2 + 1 * (100^2 +100^2 - 10^2) + 1 * (100^2 + 100^2 -10^2). $ +$ L((100,100,0),(1,1)) = 1000 + 1000 - 1000 + (1000 + 1000 - 100) + (1000 + 1000 - 100). $ +$ L((100,100,0),(1,1)) = 4800. $ + +\newpage +\textbf{Trace d'éxécution de l'algorithme :} \newline -$ L((80,20,60),(1,1)) = 21800. $ +\newfloat{algorithm}{t} -\begin{algorithm} - \caption {Algorithme PQS pour $ \mathcal{P} $} +%\begin{algorithm} \begin{algorithmic} - \REQUIRE $\varepsilon = 0.01$, $g(x,y,z)\leq 0$, $(x_0,y_0,z_0) = (80, 20 ,60)$, $(\lambda_{0_1},\lambda_{0_2}) = (1, 1)$, $r = 40$ et $r_1 = r_2 = 10$. - \ENSURE $\displaystyle\min_{(x,y,z) \in \mathbb{R}^3} J(x,y,z) = x^2 + y^2 + z^2 -r^2$ and \newline - $g(x,y,z) = (g_1(x,y,z), g_2(x,y,z)) = (x^2 + y^2 - r_1^2, x^2 + z^2 -r_2^2) \leq 0 $ - + \REQUIRE $(x_0,y_0,z_0) = (100, 100 ,0), g(x_0,y_0,z_0) \leq 0$ + \ENSURE $\displaystyle\min_{(x,y,z) \in \mathbb{R}^3} J(x,y,z) = x^2 + y^2 + z^2 -r^2$ and \newline $g(x,y,z) = (g_1(x,y,z), g_2(x,y,z)) = (x^2 + y^2 - r_1^2, x^2 + z^2 -r_2^2) \leq 0 $ \STATE \textbf{Data :} - \STATE $k \leftarrow 0$ - \STATE $(x_k,y_k,z_k) \leftarrow (80,20,60)$ + \STATE $k \leftarrow 0, (x_k, y_k, z_k) \leftarrow (100, 100, 0), r \leftarrow 100$ + \STATE $r_1 = r_2 \leftarrow 10, \varepsilon \leftarrow 0.01$ + \STATE $\lambda_1 = \lambda_2 \leftarrow 1$ + \STATE $s_k \leftarrow \frac{1}{2}$ \STATE $ H[J](x,y,z)^{-1} \leftarrow \begin{pmatrix} 0.5 & 0 & 0 \\ 0 & 0.5 & 0 \\ 0 & 0 & 0.5 \\ \end{pmatrix} $ - - \WHILE{($\norme{\nabla L(x_k,\lambda_k,\mu_k)} > \varepsilon$ or $k < 10$)} - - \STATE {//Première itération :} - - \STATE{//Calcul du gradient de $ J $ :} - \STATE $\nabla J(x_k,y_k,z_k) = (2x_k,2y_k,2z_k)$ \hfill $ //résultat : (160,40,120)$ - - \STATE {//Calcul des deux composantes du gradient de $ g $ :} - \STATE $\nabla g_1(x_k,y_k,z_k) = ((2x_k,2y_k,0)$ \hfill $ //résultat : (60, 20, 0)$ - \STATE $\nabla g_2(x_k,y_k,z_k) = (2x_k,0,2z_k))$ \hfill $ //résultat : (60, 0, 80)$ - \STATE $\nabla g(x_k,y_k,z_k) = (\nabla g_1(x_k,y_k,z_k), \nabla g_2(x_k,y_k,z_k))$ - - \STATE {//Calcul du gradient de $ L $ :} - \STATE $\nabla L((x_k,y_k,z_k),(\lambda_1,\lambda_2)) = \nabla J(x_k,y_k,z_k) + \lambda_1 \nabla g_1(x_k,y_k,z_k) + \lambda_2 \nabla g_2(x_k,y_k,z_k) $ \hfill $ //résultat : (280, 60, 200)$ - - \STATE {//Calcul de la direction de la pente $ d_k $ (méthode de Newton) :} - \STATE $ d_k = -H[J](x,y,z)^{-1}*\nabla J(x,y,z)$ \hfill $ //résultat : (-(80,20,60))$ - - \STATE {//Calcul des nouvelles valeurs des coordonnées :} - \STATE $ (x_{k+1},y_{k+1},z_{k+1}) = (x_k,y_k,z_k) + d_k $ \hfill $ //résultat : (0,0,0)$ - - \STATE {//Deuxième itération :} - - \STATE {//Incrémentation de k} - \STATE $ k \leftarrow k+1$ \hfill $ //résultat : 1$ - - \STATE{//Calcul du gradient de $ J $ :} - \STATE $\nabla J(x,y,z) = (2x_k,2y_k,2z_k)$ \hfill $ //résultat : (0,0,0)$ - - \STATE {//Calcul des deux composantes du gradient de $ g $ :} - \STATE $\nabla g_1(x_k,y_k,z_k) = ((2x_k,2y_k,0)$ \hfill $ //résultat : (60, 20, 0)$ - \STATE $\nabla g_2(x_k,y_k,z_k) = (2x_k,0,2z_k))$ \hfill $ //résultat : (60, 0, 80)$ - \STATE $\nabla g(x_k,y_k,z_k) = (\nabla g_1(x_k,y_k,z_k), \nabla g_2(x_k,y_k,z_k))$ - - \STATE {//Calcul du gradient de $ L $ :} - \STATE $\nabla L((x_k,y_k,z_k),(\lambda_1,\lambda_2)) = \nabla J(x_k,y_k,z_k) + \lambda_1 \nabla g_1(x_k,y_k,z_k) + \lambda_2 \nabla g_2(x_k,y_k,z_k)) $ \hfill $ //résultat : (160, 20, 30)$ - - \STATE {//Calcul de la direction de la pente $ d_k $ (méthode de Newton) :} - \STATE $ d_k = -H[J](x_k,y_k,z_k)^{-1} * \nabla J(x,y,z)$ \hfill $ //résultat : (-(0,0,0))$ - - \STATE {//Calcul des nouvelles valeurs des coordonnées :} - \STATE $ (x_{k+1},y_{k+1},z_{k+1}) = (x_k,y_k,z_k) + d_k $ \hfill $ //résultat : (0,0,0)$ + \newline + + \WHILE{$ (\norme{\nabla L(x_k,\lambda_k,\mu_k)} > \varepsilon $ or k $ \leq 10)$} + + \STATE {//Première itération :} + \STATE {//Calcul du gradient de $ J $ :} + \STATE $ \nabla J(x_k,y_k,z_k) = (2x_k,2y_k,2z_k)$ \hfill $ //résultat : (200,200,0) $ + \newline + % \STATE {//Calcul des deux composantes du gradient de $ g $:} + % \STATE $ \nabla g_1(x_k,y_k,z_k) = (2x_k,2y_k,0)$ \hfill $ //résultat : (200, 200, 0)$ + % \STATE $ \nabla g_2(x_k,y_k,z_k) = (2x_k,0,2z_k)$ \hfill $ //résultat : (200, 0, 0)$ + % \STATE $ \nabla g(x_k,y_k,z_k) = (\nabla g_1(x_k,y_k,z_k), \nabla g_2(x_k,y_k,z_k))$ + % \newline + \STATE {//Calcul du gradient de $ L $ :} + \STATE $\nabla L((x_k,y_k,z_k),(\lambda_1,\lambda_2)) = \nabla J(x_k,y_k,z_k) + \lambda_1 \nabla g_1(x_k,y_k,z_k) + \lambda_2 \nabla g_2(x_k,y_k,z_k)) $ \hfill $//résultat : (600, 400, 0)$ + \STATE $ \varepsilon_k = \norme{\nabla L((x_k,y_k,z_k),(\lambda_1,\lambda_2))}$ + % \STATE $ \nabla L((x_k,y_k,z_k),(\lambda_1,\lambda_2)) = (x_L , y_L, z_L) $ + \newline + \STATE {//Calcul de la direction de la pente $ d_k $ (méthode de Newton) :} + \STATE $ d_k = -H[J](x_k,y_k,z_k)^{-1} * \nabla J(x_k,y_k,z_k)$ \hfill $ //résultat : (-(100,100,0))$ + \newline + \STATE {//Calcul des nouvelles valeurs des coordonnées} + \STATE $ (x_{k+1},y_{k+1},z_{k+1}) = (x_k,y_k,z_k) + s_k d_k $ \hfill $ //résultat : (50,50,0)$ + \newline + \STATE {//Incrémentation de $ k $} + \STATE $ k \leftarrow k + 1$ \hfill $ //résultat : k = 1$ + \newline + + \STATE {//Deuxième itération :} + \STATE {//Calcul du gradient de $ J $ :} + \STATE $ \nabla J(x_k,y_k,z_k) = (2x_k,2y_k,2z_k)$ \hfill $ //résultat : (100,100,0) $ + \newline + \STATE {//Calcul du gradient de $ L $ :} + \STATE $\nabla L((x_k,y_k,z_k),(\lambda_1,\lambda_2)) = \nabla J(x_k,y_k,z_k) + \lambda_1 \nabla g_1(x_k,y_k,z_k) + \lambda_2 \nabla g_2(x_k,y_k,z_k)) $ \hfill $//résultat : (6*50, 4*50, 0)$ + \STATE $ \varepsilon_k = \norme{\nabla L((x_k,y_k,z_k),(\lambda_1,\lambda_2))}$ + \newline + \STATE {//Calcul de la direction de la pente $ d_k $ (méthode de Newton) :} + \STATE $ d_k = -H[J](x_k,y_k,z_k)^{-1} * \nabla J(x_k,y_k,z_k)$ \hfill $ //résultat : (-(50,50,0))$ + \STATE {//Calcul des nouvelles valeurs des coordonnées} + \STATE $ (x_{k+1},y_{k+1},z_{k+1}) = (x_k,y_k,z_k) + s_k d_k $ \hfill $ //résultat : (25,25,0)$ + \newline + \STATE {//Incrémentation de $ k $ } + \STATE $ k \leftarrow k + 1$ \hfill $ //résultat : k = 2$ + \newline + + \STATE {//Troisième itération :} + \STATE {//Calcul du gradient de $ J $:} + \STATE $ \nabla J(x_k,y_k,z_k) = (2x_k,2y_k,2z_k)$ \hfill $ //résultat : (50,50,0) $ + \newline + \STATE {//Calcul du gradient de $ L $ :} + \STATE $\nabla L((x_k,y_k,z_k),(\lambda_1,\lambda_2)) = \nabla J(x_k,y_k,z_k) + \lambda_1 \nabla g_1(x_k,y_k,z_k) + \lambda_2 \nabla g_2(x_k,y_k,z_k)) $ \hfill $//résultat : (6*25, 4*25, 0)$ + \STATE $ \varepsilon_k = \norme{\nabla L((x_k,y_k,z_k),(\lambda_1,\lambda_2))}$ + \newline + \STATE {//Calcul de la direction de la pente $ d_k $ (méthode de Newton) :} + \STATE $ d_k = -H[J](x,y,z)^{-1} * \nabla J(x_k,y_k,z_k)$ \hfill $ //résultat : (-(25,25,0))$ + \STATE {//Calcul des nouvelles valeurs des coordonnées} + \newline + \STATE $ (x_{k+1},y_{k+1},z_{k+1}) = (x_k,y_k,z_k) + s_k d_k $ \hfill $ //résultat : (12.5,12.5,0)$ + \STATE {//Incrémentation de $ k $} + \STATE $ k \leftarrow k + 1$ \hfill $ //résultat : k = 3$ + \newline + + \STATE {//Quatrième itération :} + \STATE {//Calcul du gradient de $ J $ :} + \STATE $ \nabla J(x_k,y_k,z_k) = (2x_k,2y_k,2z_k)$ \hfill $ //résultat : (25,25,0) $ + \newline + \STATE {//Calcul du gradient de $ L $ :} + \STATE $\nabla L((x_k,y_k,z_k),(\lambda_1,\lambda_2)) = \nabla J(x_k,y_k,z_k) + \lambda_1 \nabla g_1(x_k,y_k,z_k) + \lambda_2 \nabla g_2(x_k,y_k,z_k)) $ \hfill $//résultat : (6*12.5, 4*12.5, 0)$ + \STATE $ \varepsilon_k = \norme{\nabla L((x_k,y_k,z_k),(\lambda_1,\lambda_2))}$ + \newline + \STATE {//Calcul de la direction de la pente $ d_k $ (méthode de Newton) :} + \STATE $ d_k = -H[J](x_k,y_k,z_k)^{-1} * \nabla J(x_k,y_k,z_k)$ \hfill $ //résultat : (-(12.5,12.5,0))$ + \newline + \STATE {//Calcul des nouvelles valeurs des coordonnées} + \STATE $ (x_{k+1},y_{k+1},z_{k+1}) = (x_k,y_k,z_k) + s_k d_k $ \hfill $ //résultat : (6.25,6.25,0)$ + \STATE {//Incrémentation de $ k $} + \newline + \STATE $ k \leftarrow k + 1$ \hfill $ //résultat : k = 4$ + \newline + + \STATE {//Cinquième itération :} + \STATE {//Calcul du gradient de $ J $ :} + \STATE $ \nabla J(x_k,y_k,z_k) = (2x_k,2y_k,2z_k)$ \hfill $ //résultat : (12.5,12.5,0) $ + \newline + \STATE {//Calcul du gradient de $ L $ :} + \STATE $\nabla L((x_k,y_k,z_k),(\lambda_1,\lambda_2)) = \nabla J(x_k,y_k,z_k) + \lambda_1 \nabla g_1(x_k,y_k,z_k) + \lambda_2 \nabla g_2(x_k,y_k,z_k)) $ \hfill $//résultat : (6*6.25, 4*6.25, 0)$ + \STATE $ \varepsilon_k = \norme{\nabla L((x_k,y_k,z_k),(\lambda_1,\lambda_2))}$ + \newline + \STATE {//Calcul de la direction de la pente $ d_k $ (méthode de Newton) :} + \STATE $ d_k = -H[J](x_k,y_k,z_k)^{-1} * \nabla J(x_k,y_k,z_k)$ \hfill $ //résultat : (-(6.25,6.25,0))$ + \newline + \STATE {//Calcul des nouvelles valeurs des coordonnées} + \STATE $ (x_{k+1},y_{k+1},z_{k+1}) = (x_k,y_k,z_k) + s_k d_k $ \hfill $ //résultat : (3.125,3.125,0)$ + \newline + \STATE {//Incrémentation de $ k $} + \STATE $ k \leftarrow k + 1$ \hfill $ //résultat : k = 5$ + \newline + + \STATE {//Sixième itération :} + \STATE {//Calcul du gradient de $ J $ :} + \STATE $ \nabla J(x_k,y_k,z_k) = (2x_k,2y_k,2z_k)$ \hfill $ //résultat : (6.25,6.25,0) $ + \newline + \STATE {//Calcul du gradient de $ L $ :} + \STATE $\nabla L((x_k,y_k,z_k),(\lambda_1,\lambda_2)) = \nabla J(x_k,y_k,z_k) + \lambda_1 \nabla g_1(x_k,y_k,z_k) + \lambda_2 \nabla g_2(x_k,y_k,z_k)) $ \hfill $//résultat : (6*3.125, 4*3.125, 0)$ + \STATE $ \varepsilon_k = \norme{\nabla L((x_k,y_k,z_k),(\lambda_1,\lambda_2))}$ + \newline + \STATE {//Calcul de la direction de la pente $ d_k $ (méthode de Newton) :} + \STATE $ d_k = -H[J](x_k,y_k,z_k)^{-1} * \nabla J(x_k,y_k,z_k)$ \hfill $ //résultat : (-(1.5625,1.5625,0))$ + \STATE {//Calcul des nouvelles valeurs des coordonnées} + \newline + \STATE $ (x_{k+1},y_{k+1},z_{k+1}) = (x_k,y_k,z_k) + s_k d_k $ \hfill $ //résultat : (1.5625,1.5625,0)$ + \STATE {//Incrémentation de $ k $} + \newline + \STATE $ k \leftarrow k + 1$ \hfill $ //résultat : k = 6$ + \newline + + \STATE {//Septième itération :} + \STATE {//Calcul du gradient de $ J $ :} + \STATE $ \nabla J(x_k,y_k,z_k) = (2x_k,2y_k,2z_k)$ \hfill $ //résultat : (3.125, 3.125, 0) $ + \newline + \STATE {//Calcul du gradient de $ L $ : } + \STATE $\nabla L((x_k,y_k,z_k),(\lambda_1,\lambda_2)) = \nabla J(x_k,y_k,z_k) + \lambda_1 \nabla g_1(x_k,y_k,z_k) + \lambda_2 \nabla g_2(x_k,y_k,z_k)) $ \hfill $//résultat : (6*1.5625, 4*1.5625, 0)$ + \STATE $ \varepsilon_k = \norme{\nabla L((x_k,y_k,z_k),(\lambda_1,\lambda_2))}$ + \newline + \STATE {//Calcul de la direction de la pente $ d_k $ (méthode de Newton) :} + \STATE $ d_k = -H[J](x_k,y_k,z_k)^{-1} * \nabla J(x_k,y_k,z_k)$ \hfill $ //résultat : (-(0.78125,0.78125,0))$ + \STATE {//Calcul des nouvelles valeurs des coordonnées} + \newline + \STATE $ (x_{k+1},y_{k+1},z_{k+1}) = (x_k,y_k,z_k) + s_k d_k $ \hfill $ //résultat : (0.78125,0.78125,0)$ + \STATE {//Incrémentation de $ k $} + \newline + \STATE $ k \leftarrow k + 1$ \hfill $ //résultat : k = 7$ + \newline + + \STATE {//Huitième itération :} + \STATE{//Calcul du gradient de $ J $ :} + \STATE $ \nabla J(x_k,y_k,z_k) = (2x_k,2y_k,2z_k)$ \hfill $ //résultat : (1.5625, 1.5625, 0) $ + \newline + \STATE {//Calcul du gradient de $ L $ : } + \STATE $\nabla L((x_k,y_k,z_k),(\lambda_1,\lambda_2)) = \nabla J(x_k,y_k,z_k) + \lambda_1 \nabla g_1(x_k,y_k,z_k) + \lambda_2 \nabla g_2(x_k,y_k,z_k)) $ \hfill $//résultat : (6*0.78125, 4*0.78125, 0)$ + \STATE $ \varepsilon_k = \norme{\nabla L((x_k,y_k,z_k),(\lambda_1,\lambda_2))}$ + \newline + \STATE {//Calcul de la direction de la pente $ d_k $ (méthode de Newton) :} + \STATE $ d_k = -H[J](x_k,y_k,z_k)^{-1} * \nabla J(x_k,y_k,z_k)$ \hfill $ //résultat : (-(0.390625,0.390625,0))$ + \newline + \STATE {//Calcul des nouvelles valeurs des coordonnées} + \STATE $ (x_{k+1},y_{k+1},z_{k+1}) = (x_k,y_k,z_k) + s_k d_k $ \hfill $ //résultat : (0.390625,0.390625,0)$ + \newline + \STATE {//Incrémentation de $ k $} + \STATE $ k \leftarrow k + 1$ \hfill $ //résulat : k = 8$ + \newline + + \STATE {//Neuvième itération :} + \STATE {//Calcul du gradient de $ J $ :} + \STATE $ \nabla J(x_k,y_k,z_k) = (2x_k,2y_k,2z_k)$ \hfill $ //résultat : (0.78125, 0.78125, 0) $ + \newline + \STATE {//Calcul du gradient de $ L $ :} + \STATE $\nabla L((x_k,y_k,z_k),(\lambda_1,\lambda_2)) = \nabla J(x_k,y_k,z_k) + \lambda_1 \nabla g_1(x_k,y_k,z_k) + \lambda_2 \nabla g_2(x_k,y_k,z_k)) $ \hfill $//résultat : (6*0.390625, 4*0.390625, 0)$ + \STATE $ \varepsilon_k = \norme{\nabla L((x_k,y_k,z_k),(\lambda_1,\lambda_2))}$ + \newline + \STATE {//Calcul de la direction de la pente $ d_k $ (méthode de Newton) :} + \STATE $ d_k = -H[J](x_k,y_k,z_k)^{-1} * \nabla J(x_k,y_k,z_k)$ \hfill $ //résultat : (-(0.1953125,0.1953125,0))$ + \newline + \STATE {//Calcul des nouvelles valeurs des coordonnées} + \STATE $ (x_{k+1},y_{k+1},z_{k+1}) = (x_k,y_k,z_k) + s_k d_k $ \hfill $ //résultat : (0.1953125,0.1953125,0)$ + \newline + \STATE {//Incrémentation de $ k $} + \STATE $ k \leftarrow k + 1 \hfill //résultat : k = 9$ + \newline + + \STATE {//Dixième itération :} + \STATE {//Calcul du gradient de $ J $ :} + \STATE $ \nabla J(x_k,y_k,z_k) = (2x_k,2y_k,2z_k)$ \hfill $ //résultat : (0.390625, 0.390625, 0) $ + \newline + \STATE {//Calcul du gradient de $ L $ :} + \STATE $\nabla L((x_k,y_k,z_k),(\lambda_1,\lambda_2)) = \nabla J(x_k,y_k,z_k) + \lambda_1 \nabla g_1(x_k,y_k,z_k) + \lambda_2 \nabla g_2(x_k,y_k,z_k)) $ \hfill $//résultat : (6*0.1953125, 4*0.1953125, 0)$ + \STATE $ \varepsilon_k = \norme{\nabla L((x_k,y_k,z_k),(\lambda_1,\lambda_2))}$ + \newline + \STATE {//Calcul de la direction de la pente $ d_k $ (méthode de Newton) :} + \STATE $ d_k = -H[J](x_k,y_k,z_k)^{-1} * \nabla J(x_k,y_k,z_k)$ \hfill $ //résultat : (-(0.097665625,0.097665625,0))$ + \newline + \STATE {//Calcul des nouvelles valeurs des coordonnées} + \STATE $ (x_{k+1},y_{k+1},z_{k+1}) = (x_k,y_k,z_k) + s_k d_k $ \hfill $ //résultat : (0.097665625,0.097665625,0)$ + \newline + \STATE {//Incrémentation de $ k $} + \STATE $ k \leftarrow k + 1$ \hfill $ //résultat : k = 10$ + \newline + \STATE {//Fin de la boucle "while" car nous avons atteint $ k = 10 $, condition mettant fin à la //boucle} + \newline \ENDWHILE - \end{algorithmic} -\end{algorithm} - -\hrulefill + \end{algorithmic} +%\end{floatalgo} + %\end{algorithm} \bibliographystyle{plain} \bibliography{stdlib_sbphilo}