X-Git-Url: https://git.piment-noir.org/?a=blobdiff_plain;f=rapport%2FProjetOptimRO.tex;h=e66ed414bfb00df88cb30fd0168800a8dfaa0fa9;hb=3f5da2c3b157f1109cb1baa9b7b98a9c257222a6;hp=242aa5ebaf6e494e239323935ca1ba05542f252f;hpb=329ebbc2cc3cba962e7f22196ef58e439f2b51b4;p=Projet_Recherche_Operationnelle.git diff --git a/rapport/ProjetOptimRO.tex b/rapport/ProjetOptimRO.tex index 242aa5e..e66ed41 100644 --- a/rapport/ProjetOptimRO.tex +++ b/rapport/ProjetOptimRO.tex @@ -720,7 +720,7 @@ En posant $ d = x - x_k $ et $ H_k = H[L](x_k,\lambda_k,\mu_k) $, on obtient le \hrulefill \newline -ALGORITHME PQS AVEC CONSTRAINTES D'ÉGALITÉ ET D'INEGALITÉ. +ALGORITHME PQS AVEC CONSTRAINTES D'ÉGALITÉ ET D'INÉGALITÉ. \newline \textit{Entrées}: $ J : \mathbb{R}^n \longrightarrow \mathbb{R} $, $g: \mathbb{R}^n \longrightarrow \mathbb{R}^p$, $ h : \mathbb{R}^n \longrightarrow \mathbb{R}^q $ différentiables, $ x_0 \in \mathbb{R}^n $ point initial arbitraire, $ \lambda_0 \in \mathbb{R}_+^p $ et $ \mu_0 \in \mathbb{R}_+^q $ multiplicateurs initiaux, $ \varepsilon > 0 $ précision demandée. \newline @@ -734,7 +734,7 @@ ALGORITHME PQS AVEC CONSTRAINTES D'ÉGALITÉ ET D'INEGALITÉ. \mathcal{PQ}_k \left \{ \begin{array}{l} \displaystyle\min_{d \in \mathbb{R}^n} \nabla J(x_k)^\top d + \frac{1}{2}d^\top H_k d \\ - g_j(x_k) + \nabla g_j(x_k)^\top d = 0, \ \forall j \in \{1,\ldots,p\} \\ + g_j(x_k) + \nabla g_j(x_k)^\top d \leq 0, \ \forall j \in \{1,\ldots,p\} \\ h_i(x_k) + \nabla h_i(x_k)^\top d = 0, \ \forall i \in \{1,\ldots,q\} \end{array} \right . @@ -781,7 +781,7 @@ $$ \end{array} \right . $$ -où $$ (r,r_1,r_2) \in \mathbb{R}_+^3. $$ +où $$ (r,r_1,r_2) \in \mathbb{R}_+^{*^3} \land r < r_1 \land r < r_2. $$ \textit{Entrées} : $ J $ et $ g $ de classe $ \mathcal{C}^2 $, $ \varepsilon = 0.01 $ la précision, $ (x_0,y_0,z_0) = $ point initial et $ (\lambda_{0_1},\lambda_{0_2}) = $ multiplicateur initial. \newline Le Lagrangien $ L $ de $ \mathcal{P} $ : $$ L((x,y,z),(\lambda_1,\lambda_2)) = x^2 + y^2 + z^2 -r^2 + \lambda_1(x^2 + y^2 - r_1^2) + \lambda_2(x^2 + z^2 -r_2^2). $$