y_pred[i : i + label_period_candles]
for i in np.arange(0, label_period_candles * n_windows, label_period_candles)
]
- y_test = np.array([window for window in y_test_windows])
- test_weights = np.concatenate(np.array([window for window in test_weights_windows]))
- y_pred = np.array([window for window in y_pred_windows])
+ y_test = [window for window in y_test_windows]
+ test_weights = np.concatenate([window for window in test_weights_windows])
+ y_pred = [window for window in y_pred_windows]
error = sklearn.metrics.root_mean_squared_error(
y_test, y_pred, sample_weight=test_weights
y_pred[i : i + label_period_candles]
for i in np.arange(0, label_period_candles * n_windows, label_period_candles)
]
- y_test = np.array([window for window in y_test_windows])
- test_weights = np.concatenate(np.array([window for window in test_weights_windows]))
- y_pred = np.array([window for window in y_pred_windows])
+ y_test = [window for window in y_test_windows]
+ test_weights = np.concatenate([window for window in test_weights_windows])
+ y_pred = [window for window in y_pred_windows]
error = sklearn.metrics.root_mean_squared_error(
y_test, y_pred, sample_weight=test_weights