"n_startup_trials": 15,
"n_trials": 36,
"timeout": 7200,
- "candles_step": 10,
+ "candles_step": 4,
"expansion_factor": 0.4,
"seed": 1,
}
label_period_candles: int,
) -> tuple[float, float]:
temperature = float(
- self.freqai_info.get("prediction_thresholds_temperature", 280.0)
+ self.freqai_info.get("prediction_thresholds_temperature", 300.0)
)
extrema = pred_df.get(EXTREMA_COLUMN).iloc[
-(
candles_step,
)
max_label_period_candles: int = round_to_nearest_int(
- max(fit_live_predictions_candles // 2, min_label_period_candles),
+ max(fit_live_predictions_candles // 4, min_label_period_candles),
candles_step,
)
label_period_candles = trial.suggest_int(
max_label_period_candles,
step=candles_step,
)
- label_natr_ratio = trial.suggest_float("label_natr_ratio", 2.0, 36.0, step=0.01)
+ label_natr_ratio = trial.suggest_float("label_natr_ratio", 2.0, 38.0, step=0.01)
df = df.iloc[
-(
"force_entry": "limit",
"stoploss": "limit",
"stoploss_on_exchange": False,
- "stoploss_on_exchange_interval": 120,
+ "stoploss_on_exchange_interval": 60,
"stoploss_on_exchange_limit_ratio": 0.99,
}