)
)
extrema = pred_df.get(EXTREMA_COLUMN).iloc[-thresholds_candles:]
- thresholds_smoothing = self.freqai_info.get(
+ thresholds_smoothing: str = self.freqai_info.get(
"prediction_thresholds_smoothing", "logsumexp"
)
thresholds_smoothing_methods = {
)
elif thresholds_smoothing in thresholds_smoothing_methods:
return QuickAdapterRegressorV3.common_min_max(
- extrema,
- int(label_period_cycles),
- thresholds_quantile,
- thresholds_smoothing,
+ extrema, int(label_period_cycles), thresholds_smoothing
)
else:
raise ValueError(
label_period_cycles: int,
method: str,
) -> tuple[float, float]:
- n_values = min(int(label_period_cycles), len(series))
+ n_values = min(label_period_cycles, len(series))
if n_values <= 0:
return np.nan, np.nan