import logging
import json
+from statistics import fmean
from typing import Any
from pathlib import Path
]
y_pred = [y_pred[i : i + label_window] for i in range(0, len(y_pred), label_window)]
- error = 0.0
- for y_t, y_p, t_w in zip(y_test, y_pred, test_weights):
- error += sklearn.metrics.root_mean_squared_error(y_t, y_p, sample_weight=t_w)
- error /= len(y_test)
+ errors = [
+ sklearn.metrics.root_mean_squared_error(y_t, y_p, sample_weight=t_w)
+ for y_t, y_p, t_w in zip(y_test, y_pred, test_weights)
+ ]
- return error
+ return fmean(errors)
def hp_objective(
import logging
import json
+from statistics import fmean
from typing import Any
from pathlib import Path
]
y_pred = [y_pred[i : i + label_window] for i in range(0, len(y_pred), label_window)]
- error = 0.0
- for y_t, y_p, t_w in zip(y_test, y_pred, test_weights):
- error += sklearn.metrics.root_mean_squared_error(y_t, y_p, sample_weight=t_w)
- error /= len(y_test)
+ errors = [
+ sklearn.metrics.root_mean_squared_error(y_t, y_p, sample_weight=t_w)
+ for y_t, y_p, t_w in zip(y_test, y_pred, test_weights)
+ ]
- return error
+ return fmean(errors)
def hp_objective(