**model_training_parameters,
**{
"n_estimators": hp.get("n_estimators"),
+ "num_leaves": hp.get("num_leaves"),
"learning_rate": hp.get("learning_rate"),
+ "min_child_samples": hp.get("min_child_samples"),
"subsample": hp.get("subsample"),
"colsample_bytree": hp.get("colsample_bytree"),
"reg_alpha": hp.get("reg_alpha"),
study_params = {
"objective": "rmse",
"n_estimators": trial.suggest_int("n_estimators", 100, 800),
+ "num_leaves": trial.suggest_int("num_leaves", 20, 3000, step=10),
"learning_rate": trial.suggest_float("learning_rate", 1e-3, 0.3, log=True),
+ "min_child_samples": trial.suggest_int("min_child_samples", 10, 200),
"subsample": trial.suggest_float("subsample", 0.6, 1.0),
"colsample_bytree": trial.suggest_float("colsample_bytree", 0.6, 1.0),
"reg_alpha": trial.suggest_float("reg_alpha", 1e-8, 10.0, log=True),