and self.__optuna_config.get("enabled", False)
and self.data_split_parameters.get("test_size", TEST_SIZE) > 0
)
- self.__optuna_hp_rmse: dict[str, float] = {}
- self.__optuna_period_rmse: dict[str, float] = {}
- self.__optuna_hp_params: dict[str, dict] = {}
- self.__optuna_period_params: dict[str, dict] = {}
+ self.__optuna_hp_rmse: Dict[str, float] = {}
+ self.__optuna_period_rmse: Dict[str, float] = {}
+ self.__optuna_hp_params: Dict[str, Dict] = {}
+ self.__optuna_period_params: Dict[str, Dict] = {}
for pair in self.pairs:
self.__optuna_hp_rmse[pair] = -1
self.__optuna_period_rmse[pair] = -1
X_test,
y_test,
test_weights,
- ) -> tuple[dict | None, float | None]:
+ ) -> tuple[Dict | None, float | None]:
study_name = f"hp-{dk.pair}"
storage = self.optuna_storage(dk)
pruner = optuna.pruners.HyperbandPruner()
y_test,
test_weights,
model_training_parameters,
- ) -> tuple[dict | None, float | None]:
+ ) -> tuple[Dict | None, float | None]:
study_name = f"period-{dk.pair}"
storage = self.optuna_storage(dk)
pruner = optuna.pruners.HyperbandPruner()
return params, study.best_value
def optuna_save_best_params(
- self, dk: FreqaiDataKitchen, namespace: str, best_params: dict
+ self, dk: FreqaiDataKitchen, namespace: str, best_params: Dict
) -> None:
best_params_path = Path(
dk.full_path
def optuna_load_best_params(
self, dk: FreqaiDataKitchen, namespace: str
- ) -> dict | None:
+ ) -> Dict | None:
best_params_path = Path(
dk.full_path
/ f"{dk.pair.split('/')[0]}_optuna_{namespace}_best_params.json"
and self.__optuna_config.get("enabled", False)
and self.data_split_parameters.get("test_size", TEST_SIZE) > 0
)
- self.__optuna_hp_rmse: dict[str, float] = {}
- self.__optuna_period_rmse: dict[str, float] = {}
- self.__optuna_hp_params: dict[str, dict] = {}
- self.__optuna_period_params: dict[str, dict] = {}
+ self.__optuna_hp_rmse: Dict[str, float] = {}
+ self.__optuna_period_rmse: Dict[str, float] = {}
+ self.__optuna_hp_params: Dict[str, Dict] = {}
+ self.__optuna_period_params: Dict[str, Dict] = {}
for pair in self.pairs:
self.__optuna_hp_rmse[pair] = -1
self.__optuna_period_rmse[pair] = -1
X_test,
y_test,
test_weights,
- ) -> tuple[dict | None, float | None]:
+ ) -> tuple[Dict | None, float | None]:
study_name = f"hp-{dk.pair}"
storage = self.optuna_storage(dk)
pruner = optuna.pruners.HyperbandPruner()
y_test,
test_weights,
model_training_parameters,
- ) -> tuple[dict | None, float | None]:
+ ) -> tuple[Dict | None, float | None]:
study_name = f"period-{dk.pair}"
storage = self.optuna_storage(dk)
pruner = optuna.pruners.HyperbandPruner()
return params, study.best_value
def optuna_save_best_params(
- self, dk: FreqaiDataKitchen, namespace: str, best_params: dict
+ self, dk: FreqaiDataKitchen, namespace: str, best_params: Dict
) -> None:
best_params_path = Path(
dk.full_path
def optuna_load_best_params(
self, dk: FreqaiDataKitchen, namespace: str
- ) -> dict | None:
+ ) -> Dict | None:
best_params_path = Path(
dk.full_path
/ f"{dk.pair.split('/')[0]}_optuna_{namespace}_best_params.json"