def __init__(self, **kwargs):
super().__init__(**kwargs)
+ self.pairs = self.config.get("exchange", {}).get("pair_whitelist")
self.__optuna_config = self.freqai_info.get("optuna_hyperopt", {})
self.__optuna_hyperopt: bool = (
self.freqai_info.get("enabled", False)
self.__optuna_period_rmse: dict[str, float] = {}
self.__optuna_hp_params: dict[str, dict] = {}
self.__optuna_period_params: dict[str, dict] = {}
+ for pair in self.pairs:
+ self.__optuna_hp_rmse[pair] = -1
+ self.__optuna_period_rmse[pair] = -1
+ self.__optuna_hp_params[pair] = {}
+ self.__optuna_period_params[pair] = {}
def fit(self, data_dictionary: Dict, dk: FreqaiDataKitchen, **kwargs) -> Any:
"""
dk, X, y, train_weights, X_test, y_test, test_weights
)
if optuna_hp_params:
- if dk.pair not in self.__optuna_hp_params:
- self.__optuna_hp_params[dk.pair] = {}
self.__optuna_hp_params[dk.pair] = optuna_hp_params
model_training_parameters = {
**model_training_parameters,
**self.__optuna_hp_params[dk.pair],
}
if optuna_hp_rmse:
- if dk.pair not in self.__optuna_hp_rmse:
- self.__optuna_hp_rmse[dk.pair] = -1
self.__optuna_hp_rmse[dk.pair] = optuna_hp_rmse
optuna_period_params, optuna_period_rmse = self.optuna_period_optimize(
model_training_parameters,
)
if optuna_period_params:
- if dk.pair not in self.__optuna_period_params:
- self.__optuna_period_params[dk.pair] = {}
self.__optuna_period_params[dk.pair] = optuna_period_params
if optuna_period_rmse:
- if dk.pair not in self.__optuna_period_rmse:
- self.__optuna_period_rmse[dk.pair] = -1
self.__optuna_period_rmse[dk.pair] = optuna_period_rmse
if self.__optuna_period_params.get(dk.pair):
def __init__(self, **kwargs):
super().__init__(**kwargs)
+ self.pairs = self.config.get("exchange", {}).get("pair_whitelist")
self.__optuna_config = self.freqai_info.get("optuna_hyperopt", {})
self.__optuna_hyperopt: bool = (
self.freqai_info.get("enabled", False)
self.__optuna_period_rmse: dict[str, float] = {}
self.__optuna_hp_params: dict[str, dict] = {}
self.__optuna_period_params: dict[str, dict] = {}
+ for pair in self.pairs:
+ self.__optuna_hp_rmse[pair] = -1
+ self.__optuna_period_rmse[pair] = -1
+ self.__optuna_hp_params[pair] = {}
+ self.__optuna_period_params[pair] = {}
def fit(self, data_dictionary: Dict, dk: FreqaiDataKitchen, **kwargs) -> Any:
"""
dk, X, y, train_weights, X_test, y_test, test_weights
)
if optuna_hp_params:
- if dk.pair not in self.__optuna_hp_params:
- self.__optuna_hp_params[dk.pair] = {}
self.__optuna_hp_params[dk.pair] = optuna_hp_params
model_training_parameters = {
**model_training_parameters,
**self.__optuna_hp_params[dk.pair],
}
if optuna_hp_rmse:
- if dk.pair not in self.__optuna_hp_rmse:
- self.__optuna_hp_rmse[dk.pair] = -1
self.__optuna_hp_rmse[dk.pair] = optuna_hp_rmse
optuna_period_params, optuna_period_rmse = self.optuna_period_optimize(
model_training_parameters,
)
if optuna_period_params:
- if dk.pair not in self.__optuna_period_params:
- self.__optuna_period_params[dk.pair] = {}
self.__optuna_period_params[dk.pair] = optuna_period_params
if optuna_period_rmse:
- if dk.pair not in self.__optuna_period_rmse:
- self.__optuna_period_rmse[dk.pair] = -1
self.__optuna_period_rmse[dk.pair] = optuna_period_rmse
if self.__optuna_period_params.get(dk.pair):