if df.empty:
return -float("inf"), -float("inf")
- _, pivot_values, _ = zigzag(
+ _, pivots_values, _ = zigzag(
df,
period=label_period_candles,
ratio=label_natr_ratio,
)
- if len(pivot_values) < 2:
+ if len(pivots_values) < 2:
return -float("inf"), -float("inf")
scaled_natr_label_period_candles = (
ta.NATR(df, timeperiod=label_period_candles) * label_natr_ratio
)
- return scaled_natr_label_period_candles.median(), len(pivot_values)
+ return scaled_natr_label_period_candles.median(), len(pivots_values)
def smoothed_max(series: pd.Series, temperature=1.0) -> float:
def set_freqai_targets(self, dataframe: DataFrame, metadata: dict, **kwargs):
pair = str(metadata.get("pair"))
- pivot_indices, _, pivot_directions = zigzag(
+ pivots_indices, _, pivots_directions = zigzag(
dataframe,
period=self.get_label_period_candles(pair),
ratio=self.get_label_natr_ratio(pair),
)
dataframe[EXTREMA_COLUMN] = 0
- for pivot_idx, pivot_dir in zip(pivot_indices, pivot_directions):
+ for pivot_idx, pivot_dir in zip(pivots_indices, pivots_directions):
dataframe.at[pivot_idx, EXTREMA_COLUMN] = pivot_dir
dataframe["minima"] = np.where(dataframe[EXTREMA_COLUMN] == -1, -1, 0)
dataframe["maxima"] = np.where(dataframe[EXTREMA_COLUMN] == 1, 1, 0)