max_label_period_candles,
step=candles_step,
)
- y_test = y_test.iloc[-fit_live_predictions_candles:].to_numpy()
- test_weights = test_weights[-fit_live_predictions_candles:]
- y_pred = y_pred[-fit_live_predictions_candles:]
label_window: int = label_period_candles * 2
+ label_windows_length: int = (
+ fit_live_predictions_candles // label_window
+ ) * label_window
+ y_test = y_test.iloc[-label_windows_length:].to_numpy()
+ test_weights = test_weights[-label_windows_length:]
+ y_pred = y_pred[-label_windows_length:]
y_test = [y_test[i : i + label_window] for i in range(0, len(y_test), label_window)]
test_weights = [
test_weights[i : i + label_window]
max_label_period_candles,
step=candles_step,
)
- y_test = y_test.iloc[-fit_live_predictions_candles:].to_numpy()
- test_weights = test_weights[-fit_live_predictions_candles:]
- y_pred = y_pred[-fit_live_predictions_candles:]
label_window: int = label_period_candles * 2
+ label_windows_length: int = (
+ fit_live_predictions_candles // label_window
+ ) * label_window
+ y_test = y_test.iloc[-label_windows_length:].to_numpy()
+ test_weights = test_weights[-label_windows_length:]
+ y_pred = y_pred[-label_windows_length:]
y_test = [y_test[i : i + label_window] for i in range(0, len(y_test), label_window)]
test_weights = [
test_weights[i : i + label_window]