// "PEPE/USDT",
// "BONK/USDT"
// ],
- "pair_blacklist": [
- // Exchange
- "(1000.*).*/.*",
- // Leverage
- ".*(_PREMIUM|BEAR|BULL|HALF|HEDGE|UP|DOWN|[1235][SL])/.*",
- // Fiat
- "(ARS|AUD|BIDR|BRZ|BRL|CAD|CHF|EUR|GBP|HKD|IDRT|JPY|NGN|PLN|RON|RUB|SGD|TRY|UAH|USD|ZAR)/.*",
- // Stable
- "(AEUR|FDUSD|BUSD|CUSD|CUSDT|DAI|PAXG|SUSD|TUSD|USDC|USDN|USDP|USDT|VAI|UST|USTC|AUSD)/.*",
- // FAN
- "(ACM|AFA|ALA|ALL|ALPINE|APL|ASR|ATM|BAR|CAI|CHZ|CITY|FOR|GAL|GOZ|IBFK|JUV|LEG|LOCK-1|NAVI|NMR|NOV|PFL|PSG|ROUSH|STV|TH|TRA|UCH|UFC|YBO)/.*",
- // Others
- "(1EARTH|ILA|BOBA|CWAR|OMG|DMTR|MLS|TORN|LUNA|BTS|QKC|ACA|FTT|SRM|YFII|SNM|ANC|AION|MIR|WABI|QLC|NEBL|AUTO|VGX|DREP|PNT|PERL|LOOM|ID|NULS|TOMO|WTC|1000SATS|ORDI|XMR|ANT|MULTI|VAI|DREP|MOB|PNT|BTCDOM|WAVES|WNXM|XEM|ZEC|ELF|ARK|MDX|BETA|KP3R|AKRO|AMB|BOND|FIRO|OAX|EPX|OOKI|ONDO|MAGA|MAGAETH|TREMP|BODEN|STRUMP|TOOKER|TMANIA|BOBBY|BABYTRUMP|PTTRUMP|DTI|TRUMPIE|MAGAPEPE|PEPEMAGA|HARD|MBL|GAL|DOCK|POLS|CTXC|JASMY|BAL|SNT|CREAM|REN|LINA|REEF|UNFI|IRIS|CVP|GFT|KEY|WRX|BLZ|DAR|TROY|STMX|FTM|URO|FRED)/.*"
- ]
},
"pairlists": [
{
"fit_live_predictions_candles": 300,
"track_performance": false,
"data_kitchen_thread_count": 6, // set to number of CPU threads / 4
- "weibull_outlier_threshold": 0.999,
+ "outlier_threshold": 0.999,
"optuna_hyperopt": true,
"optuna_hyperopt_trials": 36,
"optuna_hyperopt_timeout": 3600,
else:
di_values = pd.to_numeric(pred_df_full["DI_values"], errors="coerce")
di_values = di_values.dropna()
- f = spy.stats.weibull_min.fit(di_values)
- cutoff = spy.stats.weibull_min.ppf(
- self.freqai_info.get("weibull_outlier_threshold", 0.999), *f
+ f = spy.stats.genextreme.fit(di_values)
+ cutoff = spy.stats.genextreme.ppf(
+ self.freqai_info.get("outlier_threshold"), *f
)
dk.data["DI_value_mean"] = pred_df_full["DI_values"].mean()
else:
di_values = pd.to_numeric(pred_df_full["DI_values"], errors="coerce")
di_values = di_values.dropna()
- f = spy.stats.weibull_min.fit(di_values)
- cutoff = spy.stats.weibull_min.ppf(
- self.freqai_info.get("weibull_outlier_threshold", 0.999), *f
+ f = spy.stats.genextreme.fit(di_values)
+ cutoff = spy.stats.genextreme.ppf(
+ self.freqai_info.get("outlier_threshold"), *f
)
dk.data["DI_value_mean"] = pred_df_full["DI_values"].mean()
else:
di_values = pd.to_numeric(pred_df_full["DI_values"], errors="coerce")
di_values = di_values.dropna()
- f = spy.stats.weibull_min.fit(di_values)
- cutoff = spy.stats.weibull_min.ppf(
- self.freqai_info.get("weibull_outlier_threshold", 0.999), *f
+ f = spy.stats.genextreme.fit(di_values)
+ cutoff = spy.stats.genextreme.ppf(
+ self.freqai_info.get("outlier_threshold"), *f
)
dk.data["DI_value_mean"] = pred_df_full["DI_values"].mean()