https://github.com/sponsors/robcaulk
"""
- version = "3.7.21"
+ version = "3.7.22"
@cached_property
def _optuna_config(self) -> dict:
model_training_parameters = self.model_training_parameters
- init_model = self.get_init_model(dk.pair)
-
start = time.time()
if self._optuna_hyperopt:
+ self.optuna_optimize(
+ pair=dk.pair,
+ namespace="label",
+ objective=lambda trial: label_objective(
+ trial,
+ self.data_provider.get_pair_dataframe(dk.pair),
+ self.freqai_info.get("fit_live_predictions_candles", 100),
+ self._optuna_config.get("candles_step"),
+ ),
+ directions=[
+ optuna.study.StudyDirection.MAXIMIZE,
+ optuna.study.StudyDirection.MAXIMIZE,
+ ],
+ )
+
self.optuna_optimize(
pair=dk.pair,
namespace="hp",
eval_set=eval_set,
eval_weights=eval_weights,
model_training_parameters=model_training_parameters,
- init_model=init_model,
+ init_model=self.get_init_model(dk.pair),
)
time_spent = time.time() - start
self.dd.update_metric_tracker("fit_time", time_spent, dk.pair)
"fit_live_predictions_candles", 100
)
- if self._optuna_hyperopt:
- df = self.data_provider.get_pair_dataframe(pair)
- self.optuna_optimize(
- pair=pair,
- namespace="label",
- objective=lambda trial: label_objective(
- trial,
- df,
- fit_live_predictions_candles,
- self._optuna_config.get("candles_step"),
- ),
- directions=[
- optuna.study.StudyDirection.MAXIMIZE,
- optuna.study.StudyDirection.MAXIMIZE,
- ],
- )
-
if self.live:
if not hasattr(self, "exchange_candles"):
self.exchange_candles = len(self.dd.model_return_values[pair].index)