"data_kitchen_thread_count": 6, // set to number of CPU threads / 4
"weibull_outlier_threshold": 0.999,
"optuna_hyperopt": true,
+ "optuna_hyperopt_trials": 36,
+ "optuna_hyperopt_timeout": 3600,
+ "optuna_hyperopt_jobs": 1,
"extra_returns_per_train": {
"DI_value_param1": 0,
"DI_value_param2": 0,
y_test,
self.model_training_parameters,
),
- n_trials=N_TRIALS,
- n_jobs=1,
+ n_trials=self.freqai_info.get("optuna_hyperopt_trials", N_TRIALS),
+ n_jobs=self.freqai_info.get("optuna_hyperopt_jobs", 1),
+ timeout=self.freqai_info.get("optuna_hyperopt_timeout", 7200),
)
hp = study.best_params
y_test,
self.model_training_parameters,
),
- n_trials=N_TRIALS,
- n_jobs=1,
+ n_trials=self.freqai_info.get("optuna_hyperopt_trials", N_TRIALS),
+ n_jobs=self.freqai_info.get("optuna_hyperopt_jobs", 1),
+ timeout=self.freqai_info.get("optuna_hyperopt_timeout", 7200),
)
hp = study.best_params
**{
"n_estimators": hp.get("n_estimators"),
"learning_rate": hp.get("learning_rate"),
+ "max_depth": hp.get("max_depth"),
"gamma": hp.get("gamma"),
"reg_alpha": hp.get("reg_alpha"),
"reg_lambda": hp.get("reg_lambda"),
"eval_metric": "rmse",
"n_estimators": trial.suggest_int("n_estimators", 100, 1000),
"learning_rate": trial.suggest_loguniform("learning_rate", 1e-8, 1.0),
+ "max_depth": trial.suggest_int("max_depth", 1, 10),
"gamma": trial.suggest_loguniform("gamma", 1e-8, 1.0),
"reg_alpha": trial.suggest_loguniform("reg_alpha", 1e-8, 10.0),
"reg_lambda": trial.suggest_loguniform("reg_lambda", 1e-8, 10.0),