else:
di_values = pd.to_numeric(pred_df_full["DI_values"], errors="coerce")
di_values = di_values.dropna()
- f = spy.stats.genextreme.fit(di_values)
- cutoff = spy.stats.genextreme.ppf(
+ f = spy.stats.weibull_min.fit(di_values)
+ cutoff = spy.stats.weibull_min.ppf(
self.freqai_info.get("outlier_threshold", 0.999), *f
)
return eval_set, eval_weights
-def objective(trial, X, y, train_weights, X_test, y_test, test_weights, candles_step, params):
- train_window = trial.suggest_int("train_period_candles", 1152, 17280, step=candles_step)
+def objective(
+ trial, X, y, train_weights, X_test, y_test, test_weights, candles_step, params
+):
+ train_window = trial.suggest_int(
+ "train_period_candles", 1152, 17280, step=candles_step
+ )
X = X.tail(train_window)
y = y.tail(train_window)
train_weights = train_weights[-train_window:]
- test_window = trial.suggest_int("test_period_candles", 1152, 17280, step=candles_step)
+ test_window = trial.suggest_int(
+ "test_period_candles", 1152, 17280, step=candles_step
+ )
X_test = X_test.tail(test_window)
y_test = y_test.tail(test_window)
test_weights = test_weights[-test_window:]
else:
di_values = pd.to_numeric(pred_df_full["DI_values"], errors="coerce")
di_values = di_values.dropna()
- f = spy.stats.genextreme.fit(di_values)
- cutoff = spy.stats.genextreme.ppf(
+ f = spy.stats.weibull_min.fit(di_values)
+ cutoff = spy.stats.weibull_min.ppf(
self.freqai_info.get("outlier_threshold", 0.999), *f
)
else:
di_values = pd.to_numeric(pred_df_full["DI_values"], errors="coerce")
di_values = di_values.dropna()
- f = spy.stats.genextreme.fit(di_values)
- cutoff = spy.stats.genextreme.ppf(
+ f = spy.stats.weibull_min.fit(di_values)
+ cutoff = spy.stats.weibull_min.ppf(
self.freqai_info.get("outlier_threshold", 0.999), *f
)
return eval_set, eval_weights
-def objective(trial, X, y, train_weights, X_test, y_test, test_weights, candles_step, params):
- train_window = trial.suggest_int("train_period_candles", 1152, 17280, step=candles_step)
+def objective(
+ trial, X, y, train_weights, X_test, y_test, test_weights, candles_step, params
+):
+ train_window = trial.suggest_int(
+ "train_period_candles", 1152, 17280, step=candles_step
+ )
X = X.tail(train_window)
y = y.tail(train_window)
train_weights = train_weights[-train_window:]
- test_window = trial.suggest_int("test_period_candles", 1152, 17280, step=candles_step)
+ test_window = trial.suggest_int(
+ "test_period_candles", 1152, 17280, step=candles_step
+ )
X_test = X_test.tail(test_window)
y_test = y_test.tail(test_window)
test_weights = test_weights[-test_window:]