https://github.com/sponsors/robcaulk
     """
 
-    version = "3.6.2"
+    version = "3.6.3"
 
     def __init__(self, **kwargs):
         super().__init__(**kwargs)
         label_period_candles: int,
     ) -> tuple[pd.Series, pd.Series]:
         prediction_thresholds_smoothing = self.freqai_info.get(
-            "prediction_thresholds_smoothing", "mean"
+            "prediction_thresholds_smoothing", "quantile"
         )
         smoothing_methods: dict = {
             "quantile": self.quantile_min_max_pred,
             "median": LightGBMRegressorQuickAdapterV3.median_min_max_pred,
         }
         return smoothing_methods.get(
-            prediction_thresholds_smoothing, smoothing_methods["mean"]
+            prediction_thresholds_smoothing, smoothing_methods["quantile"]
         )(pred_df, fit_live_predictions_candles, label_period_candles)
 
     def optuna_hp_enqueue_previous_best_trial(
 
     https://github.com/sponsors/robcaulk
     """
 
-    version = "3.6.2"
+    version = "3.6.3"
 
     def __init__(self, **kwargs):
         super().__init__(**kwargs)
         label_period_candles: int,
     ) -> tuple[pd.Series, pd.Series]:
         prediction_thresholds_smoothing = self.freqai_info.get(
-            "prediction_thresholds_smoothing", "mean"
+            "prediction_thresholds_smoothing", "quantile"
         )
         smoothing_methods: dict = {
             "quantile": self.quantile_min_max_pred,
             "median": XGBoostRegressorQuickAdapterV3.median_min_max_pred,
         }
         return smoothing_methods.get(
-            prediction_thresholds_smoothing, smoothing_methods["mean"]
+            prediction_thresholds_smoothing, smoothing_methods["quantile"]
         )(pred_df, fit_live_predictions_candles, label_period_candles)
 
     def optuna_hp_enqueue_previous_best_trial(
 
     INTERFACE_VERSION = 3
 
     def version(self) -> str:
-        return "3.2.5"
+        return "3.2.6"
 
     timeframe = "5m"
 
             "fit_live_predictions_candles", 100
         )
         return [
-            {"method": "CooldownPeriod", "stop_duration_candles": 4},
+            {"method": "CooldownPeriod", "stop_duration_candles": 2},
             {
                 "method": "MaxDrawdown",
                 "lookback_period_candles": fit_live_predictions_candles,
-                "trade_limit": 20,
+                "trade_limit": self.config.get("max_open_trades"),
                 "stop_duration_candles": fit_live_predictions_candles,
                 "max_allowed_drawdown": 0.2,
             },