https://github.com/sponsors/robcaulk
"""
- version = "3.6.2"
+ version = "3.6.3"
def __init__(self, **kwargs):
super().__init__(**kwargs)
label_period_candles: int,
) -> tuple[pd.Series, pd.Series]:
prediction_thresholds_smoothing = self.freqai_info.get(
- "prediction_thresholds_smoothing", "mean"
+ "prediction_thresholds_smoothing", "quantile"
)
smoothing_methods: dict = {
"quantile": self.quantile_min_max_pred,
"median": LightGBMRegressorQuickAdapterV3.median_min_max_pred,
}
return smoothing_methods.get(
- prediction_thresholds_smoothing, smoothing_methods["mean"]
+ prediction_thresholds_smoothing, smoothing_methods["quantile"]
)(pred_df, fit_live_predictions_candles, label_period_candles)
def optuna_hp_enqueue_previous_best_trial(
https://github.com/sponsors/robcaulk
"""
- version = "3.6.2"
+ version = "3.6.3"
def __init__(self, **kwargs):
super().__init__(**kwargs)
label_period_candles: int,
) -> tuple[pd.Series, pd.Series]:
prediction_thresholds_smoothing = self.freqai_info.get(
- "prediction_thresholds_smoothing", "mean"
+ "prediction_thresholds_smoothing", "quantile"
)
smoothing_methods: dict = {
"quantile": self.quantile_min_max_pred,
"median": XGBoostRegressorQuickAdapterV3.median_min_max_pred,
}
return smoothing_methods.get(
- prediction_thresholds_smoothing, smoothing_methods["mean"]
+ prediction_thresholds_smoothing, smoothing_methods["quantile"]
)(pred_df, fit_live_predictions_candles, label_period_candles)
def optuna_hp_enqueue_previous_best_trial(
INTERFACE_VERSION = 3
def version(self) -> str:
- return "3.2.5"
+ return "3.2.6"
timeframe = "5m"
"fit_live_predictions_candles", 100
)
return [
- {"method": "CooldownPeriod", "stop_duration_candles": 4},
+ {"method": "CooldownPeriod", "stop_duration_candles": 2},
{
"method": "MaxDrawdown",
"lookback_period_candles": fit_live_predictions_candles,
- "trade_limit": 20,
+ "trade_limit": self.config.get("max_open_trades"),
"stop_duration_candles": fit_live_predictions_candles,
"max_allowed_drawdown": 0.2,
},