Signed-off-by: Jérôme Benoit <jerome.benoit@piment-noir.org>
model_params: Dict[str, Any] = copy.deepcopy(self.model_training_parameters)
+ if model_params.get("seed") is None:
+ model_params["seed"] = 42
+
if self.lr_schedule:
lr = model_params.get("learning_rate", 0.0003)
if isinstance(lr, (int, float)):
y_test = data_dictionary.get("test_labels")
test_weights = data_dictionary.get("test_weights")
- model_training_parameters = self.model_training_parameters
+ model_training_parameters = copy.deepcopy(self.model_training_parameters)
start_time = time.time()
if self._optuna_hyperopt:
init_model: Any = None,
callbacks: Optional[list[Callable]] = None,
) -> Any:
+ if model_training_parameters.get("seed") is None:
+ model_training_parameters["seed"] = 1
+
if regressor == "xgboost":
from xgboost import XGBRegressor