import optuna
import sklearn
import warnings
-import re
import numpy as np
N_TRIALS = 36
)
y_pred = model.predict(X_test)
- min_label_period_candles = int(fit_live_predictions_candles / 10)
- max_label_period_candles = fit_live_predictions_candles
+ min_label_period_candles = int(fit_live_predictions_candles / 6)
+ max_label_period_candles = int(fit_live_predictions_candles / 2)
label_period_candles = trial.suggest_int(
"label_period_candles",
min_label_period_candles,
max_label_period_candles,
)
- y_test = y_test.tail(label_period_candles)
- y_pred = y_pred[-label_period_candles:]
+ y_test = [
+ y_test.iloc[i : i + label_period_candles]
+ for i in range(0, len(y_test), label_period_candles)
+ ]
+ y_pred = pd.Series(y_pred)
+ y_pred = [
+ y_pred.iloc[i : i + label_period_candles]
+ for i in range(0, len(y_pred), label_period_candles)
+ ]
error = sklearn.metrics.root_mean_squared_error(y_test, y_pred)
import optuna
import sklearn
import warnings
-import re
import numpy as np
N_TRIALS = 36
)
y_pred = model.predict(X_test)
- min_label_period_candles = int(fit_live_predictions_candles / 10)
- max_label_period_candles = fit_live_predictions_candles
+ min_label_period_candles = int(fit_live_predictions_candles / 6)
+ max_label_period_candles = int(fit_live_predictions_candles / 2)
label_period_candles = trial.suggest_int(
"label_period_candles",
min_label_period_candles,
max_label_period_candles,
)
- y_test = y_test.tail(label_period_candles)
- y_pred = y_pred[-label_period_candles:]
+ y_test = [
+ y_test.iloc[i : i + label_period_candles]
+ for i in range(0, len(y_test), label_period_candles)
+ ]
+ y_pred = pd.Series(y_pred)
+ y_pred = [
+ y_pred.iloc[i : i + label_period_candles]
+ for i in range(0, len(y_pred), label_period_candles)
+ ]
error = sklearn.metrics.root_mean_squared_error(y_test, y_pred)