"track_performance": false,
"data_kitchen_thread_count": 6, // set to number of CPU threads / 4
"outlier_threshold": 0.999,
- "optuna_hyperopt": true,
- "optuna_hyperopt_trials": 36,
- "optuna_hyperopt_timeout": 3600,
- "optuna_hyperopt_jobs": 6,
- "optuna_hyperopt_candles_step": 10,
+ "optuna_hyperopt": {
+ "enabled": true,
+ "n_trials": 36,
+ "n_jobs": 6,
+ "timeout": 3600,
+ "candles_step": 10
+ },
"extra_returns_per_train": {
"DI_value_param1": 0,
"DI_value_param2": 0,
def __init__(self, **kwargs):
super().__init__(**kwargs)
+ self.__optuna_config = self.freqai_info.get("optuna_hyperopt", {})
self.__optuna_hyperopt: bool = (
- self.freqai_info.get("optuna_hyperopt", False)
+ self.__optuna_config.get("enabled", False)
and self.data_split_parameters.get("test_size", TEST_SIZE) > 0
)
self.__optuna_hp = {}
y_test,
test_weights,
self.freqai_info.get("fit_live_predictions_candles", 100),
- self.freqai_info.get("optuna_hyperopt_candles_step", 100),
+ self.__optuna_config.get("candles_step", 100),
self.model_training_parameters,
),
- n_trials=self.freqai_info.get("optuna_hyperopt_trials", N_TRIALS),
- n_jobs=self.freqai_info.get("optuna_hyperopt_jobs", 1),
- timeout=self.freqai_info.get("optuna_hyperopt_timeout", 3600),
+ n_trials=self.__optuna_config.get("n_trials", N_TRIALS),
+ n_jobs=self.__optuna_config.get("n_jobs", 1),
+ timeout=self.__optuna_config.get("timeout", 3600),
)
self.__optuna_hp = study.best_params
def __init__(self, **kwargs):
super().__init__(**kwargs)
+ self.__optuna_config = self.freqai_info.get("optuna_hyperopt", {})
self.__optuna_hyperopt: bool = (
- self.freqai_info.get("optuna_hyperopt", False)
+ self.__optuna_config.get("enabled", False)
and self.data_split_parameters.get("test_size", TEST_SIZE) > 0
)
self.__optuna_hp = {}
y_test,
test_weights,
self.freqai_info.get("fit_live_predictions_candles", 100),
- self.freqai_info.get("optuna_hyperopt_candles_step", 100),
+ self.__optuna_config.get("candles_step", 100),
self.model_training_parameters,
),
- n_trials=self.freqai_info.get("optuna_hyperopt_trials", N_TRIALS),
- n_jobs=self.freqai_info.get("optuna_hyperopt_jobs", 1),
- timeout=self.freqai_info.get("optuna_hyperopt_timeout", 3600),
+ n_trials=self.__optuna_config.get("n_trials", N_TRIALS),
+ n_jobs=self.__optuna_config.get("n_jobs", 1),
+ timeout=self.__optuna_config.get("timeout", 3600),
)
self.__optuna_hp = study.best_params