X_test,
y_test,
test_weights,
+ self.data_split_parameters.get("test_size", TEST_SIZE),
self.freqai_info.get("fit_live_predictions_candles", 100),
self.__optuna_config.get("candles_step", 100),
self.model_training_parameters,
X_test,
y_test,
test_weights,
+ test_size,
fit_live_predictions_candles,
candles_step,
params,
):
- min_train_window: int = 10
+ min_train_window: int = 600
max_train_window: int = (
len(X) if len(X) > min_train_window else (min_train_window + len(X))
)
y = y.tail(train_window)
train_weights = train_weights[-train_window:]
- min_test_window: int = 10
+ min_test_window: int = int(min_train_window * test_size)
max_test_window: int = (
len(X_test)
if len(X_test) > min_test_window
)
y_pred = model.predict(X_test)
- min_label_period_candles = 1
+ min_label_period_candles = int(fit_live_predictions_candles / 10)
max_label_period_candles = int(fit_live_predictions_candles / 2)
if max_label_period_candles < min_label_period_candles:
max_label_period_candles = min_label_period_candles
X_test,
y_test,
test_weights,
+ self.data_split_parameters.get("test_size", TEST_SIZE),
self.freqai_info.get("fit_live_predictions_candles", 100),
self.__optuna_config.get("candles_step", 100),
self.model_training_parameters,
X_test,
y_test,
test_weights,
+ test_size,
fit_live_predictions_candles,
candles_step,
params,
):
- min_train_window: int = 10
+ min_train_window: int = 600
max_train_window: int = (
len(X) if len(X) > min_train_window else (min_train_window + len(X))
)
y = y.tail(train_window)
train_weights = train_weights[-train_window:]
- min_test_window: int = 10
+ min_test_window: int = int(min_train_window * test_size)
max_test_window: int = (
len(X_test)
if len(X_test) > min_test_window
)
y_pred = model.predict(X_test)
- min_label_period_candles = 1
+ min_label_period_candles = int(fit_live_predictions_candles / 10)
max_label_period_candles = int(fit_live_predictions_candles / 2)
if max_label_period_candles < min_label_period_candles:
max_label_period_candles = min_label_period_candles