return min_pred[EXTREMA_COLUMN], max_pred[EXTREMA_COLUMN]
-def get_callbacks(trial: optuna.Trial, regressor: str) -> list:
+def get_callbacks(trial: optuna.Trial, regressor: str) -> list[Callable]:
if regressor == "xgboost":
callbacks = [
optuna.integration.XGBoostPruningCallback(trial, "validation_0-rmse")
eval_weights: Optional[list[np.ndarray]],
model_training_parameters: dict,
init_model: Any = None,
- callbacks: list = None,
+ callbacks: list[Callable] = None,
) -> Any:
if regressor == "xgboost":
from xgboost import XGBRegressor