https://github.com/sponsors/robcaulk
"""
- version = "3.7.106"
+ version = "3.7.107"
@cached_property
def _optuna_config(self) -> dict[str, Any]:
def calculate_slopes_ok_threshold(
pos: int,
- min_threshold: float = 0.85,
+ min_threshold: float = 0.75,
max_threshold: float = 0.95,
) -> float:
volatility_quantile = calculate_volatility_quantile(pos)
if np.isnan(volatility_quantile):
return median([min_threshold, max_threshold])
- return min_threshold + (max_threshold - min_threshold) * volatility_quantile
+ return max_threshold - (max_threshold - min_threshold) * volatility_quantile
def update_candidate_pivot(pos: int, value: float):
nonlocal candidate_pivot_pos, candidate_pivot_value
INTERFACE_VERSION = 3
def version(self) -> str:
- return "3.3.115"
+ return "3.3.116"
timeframe = "5m"
lower_bound = 0
upper_bound = 0
price_deviation = (last_candle_natr / 100.0) * self.get_entry_natr_ratio(
- pair, 0.0025
+ pair, 0.00125
)
if side == "long":
lower_bound = last_candle_low * (1 - price_deviation)
def calculate_slopes_ok_threshold(
pos: int,
- min_threshold: float = 0.85,
+ min_threshold: float = 0.75,
max_threshold: float = 0.95,
) -> float:
volatility_quantile = calculate_volatility_quantile(pos)
if np.isnan(volatility_quantile):
return median([min_threshold, max_threshold])
- return min_threshold + (max_threshold - min_threshold) * volatility_quantile
+ return max_threshold - (max_threshold - min_threshold) * volatility_quantile
def update_candidate_pivot(pos: int, value: float):
nonlocal candidate_pivot_pos, candidate_pivot_value