pred_df: pd.DataFrame,
fit_live_predictions_candles: int,
label_period_candles: int,
- ) -> tuple[float, float]:
+ ) -> tuple[pd.Series, pd.Series]:
prediction_thresholds_smoothing = self.freqai_info.get(
"prediction_thresholds_smoothing", "mean"
)
pred_df: pd.DataFrame,
fit_live_predictions_candles: int,
label_period_candles: int,
- ) -> tuple[float, float]:
+ ) -> tuple[pd.Series, pd.Series]:
pred_df_sorted = (
pred_df.select_dtypes(exclude=["object"])
.copy()
def mean_min_max_pred(
pred_df: pd.DataFrame, fit_live_predictions_candles: int, label_period_candles: int
-) -> tuple[float, float]:
+) -> tuple[pd.Series, pd.Series]:
pred_df_sorted = (
pred_df.select_dtypes(exclude=["object"])
.copy()
def median_min_max_pred(
pred_df: pd.DataFrame, fit_live_predictions_candles: int, label_period_candles: int
-) -> tuple[float, float]:
+) -> tuple[pd.Series, pd.Series]:
pred_df_sorted = (
pred_df.select_dtypes(exclude=["object"])
.copy()
pred_df: pd.DataFrame,
fit_live_predictions_candles: int,
label_period_candles: int,
- ) -> tuple[float, float]:
+ ) -> tuple[pd.Series, pd.Series]:
prediction_thresholds_smoothing = self.freqai_info.get(
"prediction_thresholds_smoothing", "mean"
)
pred_df: pd.DataFrame,
fit_live_predictions_candles: int,
label_period_candles: int,
- ) -> tuple[float, float]:
+ ) -> tuple[pd.Series, pd.Series]:
pred_df_sorted = (
pred_df.select_dtypes(exclude=["object"])
.copy()
def mean_min_max_pred(
pred_df: pd.DataFrame, fit_live_predictions_candles: int, label_period_candles: int
-) -> tuple[float, float]:
+) -> tuple[pd.Series, pd.Series]:
pred_df_sorted = (
pred_df.select_dtypes(exclude=["object"])
.copy()
def median_min_max_pred(
pred_df: pd.DataFrame, fit_live_predictions_candles: int, label_period_candles: int
-) -> tuple[float, float]:
+) -> tuple[pd.Series, pd.Series]:
pred_df_sorted = (
pred_df.select_dtypes(exclude=["object"])
.copy()