import logging
import json
-from statistics import fmean
+from statistics import geometric_mean
from typing import Any
from pathlib import Path
https://github.com/sponsors/robcaulk
"""
- version = "3.6.0"
+ version = "3.6.1"
def __init__(self, **kwargs):
super().__init__(**kwargs)
label_windows_length: int = (
fit_live_predictions_candles // label_window
) * label_window
- y_test = y_test.iloc[-label_windows_length:].to_numpy()
- test_weights = test_weights[-label_windows_length:]
- y_pred = y_pred[-label_windows_length:]
- y_test = [
- y_test[i : i + label_window]
+ y_test_period = [
+ y_test.iloc[-label_windows_length:].to_numpy()[i : i + label_window]
for i in range(0, label_windows_length, label_window)
]
- test_weights = [
- test_weights[i : i + label_window]
+ test_weights_period = [
+ test_weights[-label_windows_length:][i : i + label_window]
for i in range(0, label_windows_length, label_window)
]
- y_pred = [
- y_pred[i : i + label_window]
+ y_pred_period = [
+ y_pred[-label_windows_length:][i : i + label_window]
for i in range(0, label_windows_length, label_window)
]
errors = [
sklearn.metrics.root_mean_squared_error(y_t, y_p, sample_weight=t_w)
- for y_t, y_p, t_w in zip(y_test, y_pred, test_weights)
+ for y_t, y_p, t_w in zip(y_test_period, y_pred_period, test_weights_period)
]
- return fmean(errors)
+ return geometric_mean(errors)
def hp_objective(
import logging
import json
-from statistics import fmean
+from statistics import geometric_mean
from typing import Any
from pathlib import Path
https://github.com/sponsors/robcaulk
"""
- version = "3.6.0"
+ version = "3.6.1"
def __init__(self, **kwargs):
super().__init__(**kwargs)
label_windows_length: int = (
fit_live_predictions_candles // label_window
) * label_window
- y_test = y_test.iloc[-label_windows_length:].to_numpy()
- test_weights = test_weights[-label_windows_length:]
- y_pred = y_pred[-label_windows_length:]
- y_test = [
- y_test[i : i + label_window]
+ y_test_period = [
+ y_test.iloc[-label_windows_length:].to_numpy()[i : i + label_window]
for i in range(0, label_windows_length, label_window)
]
- test_weights = [
- test_weights[i : i + label_window]
+ test_weights_period = [
+ test_weights[-label_windows_length:][i : i + label_window]
for i in range(0, label_windows_length, label_window)
]
- y_pred = [
- y_pred[i : i + label_window]
+ y_pred_period = [
+ y_pred[-label_windows_length:][i : i + label_window]
for i in range(0, label_windows_length, label_window)
]
errors = [
sklearn.metrics.root_mean_squared_error(y_t, y_p, sample_weight=t_w)
- for y_t, y_p, t_w in zip(y_test, y_pred, test_weights)
+ for y_t, y_p, t_w in zip(y_test_period, y_pred_period, test_weights_period)
]
- return fmean(errors)
+ return geometric_mean(errors)
def hp_objective(