"fit_live_predictions_candles": 300,
"data_kitchen_thread_count": 6, // set to number of CPU threads / 4
"track_performance": false,
- "predictions_smoothing": "mean",
+ "prediction_thresholds_smoothing": "mean",
"outlier_threshold": 0.999,
"optuna_hyperopt": {
"enabled": true,
fit_live_predictions_candles: int,
label_period_candles: int,
) -> tuple[float, float]:
- predictions_smoothing = self.freqai_info.get("predictions_smoothing", "mean")
- if predictions_smoothing == "quantile":
+ prediction_thresholds_smoothing = self.freqai_info.get(
+ "prediction_thresholds_smoothing", "mean"
+ )
+ if prediction_thresholds_smoothing == "quantile":
return self.quantile_min_max_pred(
pred_df, fit_live_predictions_candles, label_period_candles
)
- elif predictions_smoothing == "mean":
+ elif prediction_thresholds_smoothing == "mean":
return mean_min_max_pred(
pred_df, fit_live_predictions_candles, label_period_candles
)
- elif predictions_smoothing == "median":
+ elif prediction_thresholds_smoothing == "median":
return median_min_max_pred(
pred_df, fit_live_predictions_candles, label_period_candles
)
else:
raise ValueError(
- f"Invalid predictions_smoothing value: '{predictions_smoothing}'"
+ f"Invalid prediction_thresholds_smoothing value: '{prediction_thresholds_smoothing}'"
)
def optuna_hp_enqueue_previous_best_trial(
fit_live_predictions_candles: int,
label_period_candles: int,
) -> tuple[float, float]:
- predictions_smoothing = self.freqai_info.get("predictions_smoothing", "mean")
- if predictions_smoothing == "quantile":
+ prediction_thresholds_smoothing = self.freqai_info.get(
+ "prediction_thresholds_smoothing", "mean"
+ )
+ if prediction_thresholds_smoothing == "quantile":
return self.quantile_min_max_pred(
pred_df, fit_live_predictions_candles, label_period_candles
)
- elif predictions_smoothing == "mean":
+ elif prediction_thresholds_smoothing == "mean":
return mean_min_max_pred(
pred_df, fit_live_predictions_candles, label_period_candles
)
- elif predictions_smoothing == "median":
+ elif prediction_thresholds_smoothing == "median":
return median_min_max_pred(
pred_df, fit_live_predictions_candles, label_period_candles
)
else:
raise ValueError(
- f"Invalid predictions_smoothing value: '{predictions_smoothing}'"
+ f"Invalid prediction_thresholds_smoothing value: '{prediction_thresholds_smoothing}'"
)
def optuna_hp_enqueue_previous_best_trial(