_Profit factor configuration:_
-- `win_reward_factor` (default: 2.0) - Amplification for PnL above target
+- `win_reward_factor` (default: 2.0) - Amplification for PnL above target (no upper bound; effective profit_target_factor ∈ [1, 1 + win_reward_factor] because tanh ≤ 1)
- `pnl_factor_beta` (default: 0.5) - Sensitivity of amplification around target
**`--real_episodes`** (path, optional)
- **Feature Importance** - Machine learning analysis of key drivers
- **Statistical Validation** - Hypothesis tests, confidence intervals, normality + effect sizes
- **Distribution Shift** - Real vs synthetic divergence (KL, JS, Wasserstein, KS)
-- **Diagnostics Validation Summary**
+- **Diagnostics Validation Summary**
- Pass/fail snapshot of all runtime checks
- Consolidated pass/fail state of every validation layer (invariants, parameter bounds, bootstrap CIs, distribution metrics, diagnostics, hypothesis tests)
| `exit_half_life` | 1e-6 | — | Half-life in duration ratio units |
| `efficiency_weight` | 0.0 | 2.0 | Blend weight |
| `efficiency_center` | 0.0 | 1.0 | Sigmoid center |
-| `win_reward_factor` | 0.0 | — | Amplification ≥ 0 |
+| `win_reward_factor` | 0.0 | — | Amplification ≥ 0 (no upper cap; asymptotic multiplier 1+win_reward_factor) |
| `pnl_factor_beta` | 1e-6 | — | Sensitivity ≥ tiny positive |
Non-finite inputs are reset to the applicable minimum (or 0.0 if only a maximum is declared) and logged as adjustments.