"""
Defines a single trial for hyperparameter optimization using Optuna
"""
+ logger.info("------------ Hyperopt trial %d ------------", trial.number)
+
if "PPO" in self.model_type:
params = sample_params_ppo(trial, self.n_envs)
if params.get("n_steps", 0) * self.n_envs > total_timesteps:
# Ensure that the sampled parameters take precedence
params = deepmerge(self.get_model_params(), params)
+ logger.info("Trial %s params: %s", trial.number, params)
+
nan_encountered = False
if self.activate_tensorboard:
else:
tensorboard_log_path = None
- logger.info("------------ Hyperopt trial %d ------------", trial.number)
- logger.info("Trial %s params: %s", trial.number, params)
-
train_env, eval_env = self._get_train_and_eval_environments(
train_df, test_df, dk, trial=trial
)