dk.data["extra_returns_per_train"]["DI_cutoff"] = cutoff
dk.data["extra_returns_per_train"]["label_period_candles"] = (
- self.__optuna_hp.get(
- pair, {}
- ).get("label_period_candles", self.ft_params["label_period_candles"])
+ self.__optuna_hp.get(pair, {}).get(
+ "label_period_candles", self.ft_params["label_period_candles"]
+ )
)
dk.data["extra_returns_per_train"]["rmse"] = self.__optuna_hp.get(pair, {}).get(
"rmse", 0
study_name = dk.pair
storage = self.get_optuna_storage(dk)
pruner = optuna.pruners.HyperbandPruner()
+ try:
+ optuna.delete_study(study_name=study_name, storage=storage)
+ except optuna.exceptions.StudyNotFound:
+ pass
study = optuna.create_study(
study_name=study_name,
sampler=optuna.samplers.TPESampler(
pruner=pruner,
direction=optuna.study.StudyDirection.MINIMIZE,
storage=storage,
- load_if_exists=True,
)
hyperopt_failed = False
try:
dk.data["extra_returns_per_train"]["DI_cutoff"] = cutoff
dk.data["extra_returns_per_train"]["label_period_candles"] = (
- self.__optuna_hp.get(
- pair, {}
- ).get("label_period_candles", self.ft_params["label_period_candles"])
+ self.__optuna_hp.get(pair, {}).get(
+ "label_period_candles", self.ft_params["label_period_candles"]
+ )
)
dk.data["extra_returns_per_train"]["rmse"] = self.__optuna_hp.get(pair, {}).get(
"rmse", 0
study_name = dk.pair
storage = self.get_optuna_storage(dk)
pruner = optuna.pruners.HyperbandPruner()
+ try:
+ optuna.delete_study(study_name=study_name, storage=storage)
+ except optuna.exceptions.StudyNotFound:
+ pass
study = optuna.create_study(
study_name=study_name,
sampler=optuna.samplers.TPESampler(
pruner=pruner,
direction=optuna.study.StudyDirection.MINIMIZE,
storage=storage,
- load_if_exists=True,
)
hyperopt_failed = False
try: