\usepackage{tocbibind}
\usepackage{lmodern}
\usepackage{enumitem}
- \usepackage{algorithm}
++\usepackage{algorithm2e}
+\usepackage{algorithmic}
%%%%%Marges & en-t\^etes
\end{pmatrix} = 2Id_{\mathbb{R}^3} $$
On en déduit que $ H[J](x,y,z) $ est inversible et que $ H[J](x,y,z)^{-1} = \frac{1}{2}Id_{\mathbb{R}^3} $.
- \newline
- \newline
+\hrulefill
+
+\subsection{Trace d'éxécution de PQS}
+
+Utilisons le problème $ \mathcal{P} $ précédent :
+
+$$
+ \mathcal{P} \left \{
+ \begin{array}{l}
+ \displaystyle\min_{(x,y,z) \in \mathbb{R}^3} J(x,y,z) = x^2 + y^2 + z^2 -r^2 \\
+ g(x,y,z) = (g_1(x,y,z), g_2(x,y,z)) = (x^2 + y^2 - r_1^2, x^2 + z^2 -r_2^2) \leq 0 \\
+ \end{array}
+ \right .
+$$
+où $$ (r,r_1,r_2) \in \mathbb{R}_+^3. $$
+\textit{Entrées} : $ J $ et $ g $ de classe $ \mathcal{C}^2 $, $ \varepsilon = (0.01,0.01,0.01) $, $ (x_0,y_0,z_0) = (80, 20 ,60)$ et $ (\lambda_{0_1},\lambda_{0_2}) = (1 , 1)$, les rayons : $r= 40$ et $r1= r2= 10$.
+\newline
+Le Lagrangien $ L $ de $ \mathcal{P} $ : $$ L((x,y,z),(\lambda_1,\lambda_2)) = x^2 + y^2 + z^2 -r^2 + \lambda_1(x^2 + y^2 - r_1^2) + \lambda_2(x^2 + z^2 -r_2^2). $$
+\newline
+Le Lagrangien $ L $ de $ \mathcal{P} $ avec les valeurs :
+ $ L((80,20,60),(1,1)) = 80^2 + 20^2 + 60^2 -60^2 + 1 * (80^2 +20y^2 - 30^2) + \lambda_2(80^2 + 60^2 -30^2). $
+ $ L((80,20,60),(1,1)) = 6400 + 400 + 3600 - 3600 + (6400 + 400 - 900) + (6400 + 3600 -900). $
+ $ L((80,20,60),(1,1)) = 21800. $
+
+ \begin{algorithm}
+ \caption {PQS du problème $ \mathcal{P} $}
+ \begin{algorithmic}
+ \REQUIRE $g(x,y,z)\leq 0$, $(x_0,y_0,z_0) = (80, 20 ,60)$
+ \ENSURE $\min_{(x,y,z) \in \mathbb{R}^3} J(x,y,z) = x^2 + y^2 + z^2 -r^2$ and \newline $g(x,y,z) = (g_1(x,y,z), g_2(x,y,z)) = (x^2 + y^2 - r_1^2, x^2 + z^2 -r_2^2) \leq 0 $
+ \STATE \textbf{Data :}
+ \STATE $k \leftarrow 0$
+ \STATE $x_k \leftarrow 80$
+ \STATE $y_k \leftarrow 20$
+ \STATE $z_k \leftarrow 60$
+ \STATE $x_a \leftarrow 30$
+ \STATE $y_a \leftarrow 10$
+ \STATE $z_a \leftarrow 40$
+ \STATE $r \leftarrow 40$
+ \STATE $r_1 \leftarrow 10$
+ \STATE $r_2 \leftarrow 10$
+ \STATE $\varepsilon \leftarrow 0.01$
+ \STATE $\lambda_1 = \lambda_2 = 1$
+ \STATE $ H[J](x,y,z)^{-1}\leftarrow \begin{pmatrix}
+ 0.5 & 0 & 0 \\
+ 0 & 0.5 & 0 \\
+ 0 & 0 & 0.5 \\ \end{pmatrix} $
+\newline
+
+ \STATE{//Calcule du gradient de $ J $ :}
+ \STATE $ \nabla J(x,y,z) = (2x_k,2y_k,2z_k)$ \hfill $ // résultat : (160,40,120) $
+\newline
+ \STATE {//calcule des deux sous partie de du gradient de $ g $: }
+ \STATE $ // \nabla g(x_k,y_k,z_k) = (\nabla g_1(x_k,y_k,z_k), \nabla g_2(x_k,y_k,z_k))$
+ \STATE $ \nabla g_1(x_a,y_a,z_a) = ((2x_a,2y_a,0)$ \hfill $ //résultat : (60, 20, 0)$
+ \STATE $ \nabla g_2(x_a,y_a,z_a) = (2x_a,0,2z_a))$ \hfill $ //résultat : (60, 0, 80)$
+\newline
+ \WHILE{$ (\norme{\nabla L(x_k,\lambda_k,\mu_k)} > \varepsilon $ or k $ < 10)$}
+
+ \STATE { //première itération :}
+
+\STATE {//Calcule du gradient de $ L $ : }
+\STATE $\nabla L((x_k,y_k,z_k),(\lambda_1,\lambda_2)) = \nabla J(x_k,y_k,z_k) + \lambda_1 \nabla g_1(x_a,y_a,z_a) + \lambda_2 \nabla g_2(x_a,y_a,z_a)) $ \hfill $// résultat : (280, 60, 200)$
+ \STATE $ (\varepsilon ,\varepsilon ,\varepsilon ) = \nabla L((x_k,y_k,z_k),(\lambda_1,\lambda_2)) $
+\newline
+ \STATE {//Calcule de la direction de la pente dk (méthode de Newton) : }
+ \STATE $ d_k = -H[J](x,y,z)^{-1}*\nabla J(x,y,z)$ \hfill $ //résultat : (-(80,20,60))$
+ \newline
+ \STATE {//Calcul nouvelles valeurs des coordonnées}
+ \STATE $ (x_{k+1},y_{k+1},z_{k+1}) = (x_k,y_k,z_k)+ d_k $ \hfill $ //résultat : (0,0,0)$
+ \newline
+ \STATE {//Incrémentation de k}
+ \STATE $ k \leftarrow k+1$
- \end{algorithmic}
++
++
+ \STATE {//Deuxième itération :}
+ \STATE{//Calcule du gradient de $ J $ :}
+ \STATE $ \nabla J(x,y,z) = (2x_k,2y_k,2z_k)$ \hfill $ // résultat : (0,0,0) $
+
+\STATE {//Calcule du gradient de $ L $ : }
+\STATE $\nabla L((x_k,y_k,z_k),(\lambda_1,\lambda_2)) = \nabla J(x_k,y_k,z_k) + \lambda_1 \nabla g_1(x_a,y_a,z_a) + \lambda_2 \nabla g_2(x_a,y_a,z_a)) $ \hfill $// résultat : (160, 20, 30)$
+ \STATE $ (\varepsilon ,\varepsilon ,\varepsilon ) = \nabla L((x_k,y_k,z_k),(\lambda_1,\lambda_2)) $
+
+ \STATE {//Calcule de la direction de la pente dk (méthode de Newton) : }
+ \STATE $ d_k = -H[J](x,y,z)^{-1}*\nabla J(x,y,z)$ \hfill $ //résultat : (-(0,0,0))$
+ \STATE {//Calcul nouvelles valeurs des coordonnées}
+ \STATE $ (x_{k+1},y_{k+1},z_{k+1}) = (x_k,y_k,z_k)+ d_k $ \hfill $ //résultat : (0,0,0)$
+ \STATE {//Incrémentation de k}
+ \STATE $ k \leftarrow k+1$\hfill $ //k = 1$
+
+ \ENDWHILE
++
++\end{algorithmic}
+\end{algorithm}
+
+
+\hrulefill
+
\bibliographystyle{plain}
\bibliography{stdlib_sbphilo}