y_pred.iloc[i : i + label_period_candles]
for i in range(0, len(y_pred), label_period_candles)
]
+ max_chunk_length = max(len(chunk) for chunk in y_test + y_pred)
+ y_test = [
+ np.pad(
+ chunk,
+ (0, max_chunk_length - len(chunk)),
+ mode="constant",
+ constant_values=np.nan,
+ )
+ for chunk in y_test
+ ]
+ y_pred = [
+ np.pad(
+ chunk,
+ (0, max_chunk_length - len(chunk)),
+ mode="constant",
+ constant_values=np.nan,
+ )
+ for chunk in y_pred
+ ]
error = sklearn.metrics.root_mean_squared_error(y_test, y_pred)
y_pred.iloc[i : i + label_period_candles]
for i in range(0, len(y_pred), label_period_candles)
]
+ max_chunk_length = max(len(chunk) for chunk in y_test + y_pred)
+ y_test = [
+ np.pad(
+ chunk,
+ (0, max_chunk_length - len(chunk)),
+ mode="constant",
+ constant_values=np.nan,
+ )
+ for chunk in y_test
+ ]
+ y_pred = [
+ np.pad(
+ chunk,
+ (0, max_chunk_length - len(chunk)),
+ mode="constant",
+ constant_values=np.nan,
+ )
+ for chunk in y_pred
+ ]
error = sklearn.metrics.root_mean_squared_error(y_test, y_pred)