// "device": "gpu",
// "use_rmm:": true,
"n_jobs": 6, // set to number of CPU threads / 4
- "n_estimators": 1000,
"verbosity": 1
}
},
https://github.com/sponsors/robcaulk
"""
- version = "3.6.0"
+ version = "3.6.1"
def __init__(self, **kwargs):
super().__init__(**kwargs)
model_training_parameters,
) -> float:
study_parameters = {
+ "n_estimators": trial.suggest_int("n_estimators", 100, 2000, step=10),
"num_leaves": trial.suggest_int("num_leaves", 2, 256),
"learning_rate": trial.suggest_float("learning_rate", 1e-3, 0.3, log=True),
"min_child_samples": trial.suggest_int("min_child_samples", 5, 100),
https://github.com/sponsors/robcaulk
"""
- version = "3.6.0"
+ version = "3.6.1"
def __init__(self, **kwargs):
super().__init__(**kwargs)
model_training_parameters,
) -> float:
study_parameters = {
+ "n_estimators": trial.suggest_int("n_estimators", 100, 2000, step=10),
"learning_rate": trial.suggest_float("learning_rate", 1e-3, 0.3, log=True),
"max_depth": trial.suggest_int("max_depth", 3, 18),
"min_child_weight": trial.suggest_int("min_child_weight", 1, 200),