self, namespace: str, study: optuna.study.Study
) -> Optional[optuna.trial.FrozenTrial]:
if namespace != "label":
- raise ValueError(f"Unsupported namespace: {namespace}")
+ raise ValueError(f"Invalid namespace: {namespace}")
if not QuickAdapterRegressorV3.optuna_study_has_best_trials(study):
return None
)
if label_trials_selection not in ["quantile", "chebyshev"]:
raise ValueError(
- f"Unsupported label trials selection method: {label_trials_selection}. Supported methods are 'quantile' and 'chebyshev'."
+ f"Unsupported label trials selection method: {label_trials_selection}. Supported methods are 'quantile' and 'chebyshev'"
)
best_trials = [
)
else:
raise ValueError(
- f"Unsupported optuna storage backend: {storage_backend}. Supported backends are 'sqlite' and 'file'."
+ f"Unsupported optuna storage backend: {storage_backend}. Supported backends are 'sqlite' and 'file'"
)
return storage
if data_array.size == 0:
return np.nan
if temperature < 0:
- raise ValueError("temperature must be non-negative.")
+ raise ValueError("temperature must be non-negative")
if np.isclose(temperature, 0):
return data_array.max()
return sp.special.logsumexp(temperature * data_array) / temperature
if data_array.size == 0:
return np.nan
if temperature < 0:
- raise ValueError("temperature must be non-negative.")
+ raise ValueError("temperature must be non-negative")
if np.isclose(temperature, 0):
return data_array.min()
return -sp.special.logsumexp(-temperature * data_array) / temperature