y_test = y_test.iloc[-fit_live_predictions_candles:].to_numpy()
test_weights = test_weights[-fit_live_predictions_candles:]
y_pred = y_pred[-fit_live_predictions_candles:]
- y_test = [
- y_test[i : i + label_period_candles]
- for i in range(0, len(y_test), label_period_candles)
- ]
+ label_window: int = label_period_candles * 2
+ y_test = [y_test[i : i + label_window] for i in range(0, len(y_test), label_window)]
test_weights = [
- test_weights[i : i + label_period_candles]
- for i in range(0, len(test_weights), label_period_candles)
- ]
- y_pred = [
- y_pred[i : i + label_period_candles]
- for i in range(0, len(y_pred), label_period_candles)
+ test_weights[i : i + label_window]
+ for i in range(0, len(test_weights), label_window)
]
+ y_pred = [y_pred[i : i + label_window] for i in range(0, len(y_pred), label_window)]
error = 0.0
for y_t, y_p, t_w in zip(y_test, y_pred, test_weights):
y_test = y_test.iloc[-fit_live_predictions_candles:].to_numpy()
test_weights = test_weights[-fit_live_predictions_candles:]
y_pred = y_pred[-fit_live_predictions_candles:]
- y_test = [
- y_test[i : i + label_period_candles]
- for i in range(0, len(y_test), label_period_candles)
- ]
+ label_window: int = label_period_candles * 2
+ y_test = [y_test[i : i + label_window] for i in range(0, len(y_test), label_window)]
test_weights = [
- test_weights[i : i + label_period_candles]
- for i in range(0, len(test_weights), label_period_candles)
- ]
- y_pred = [
- y_pred[i : i + label_period_candles]
- for i in range(0, len(y_pred), label_period_candles)
+ test_weights[i : i + label_window]
+ for i in range(0, len(test_weights), label_window)
]
+ y_pred = [y_pred[i : i + label_window] for i in range(0, len(y_pred), label_window)]
error = 0.0
for y_t, y_p, t_w in zip(y_test, y_pred, test_weights):