)
self.freqai_info["feature_parameters"][pair] = {}
self.freqai_info["feature_parameters"][pair]["label_period_candles"] = (
- self.__optuna_period_params[pair].get(
- "label_period_candles", self.ft_params["label_period_candles"]
- )
+ self.__optuna_period_params[
+ pair
+ ].get("label_period_candles", self.ft_params["label_period_candles"])
)
def fit(self, data_dictionary: Dict, dk: FreqaiDataKitchen, **kwargs) -> Any:
dk.data["extra_returns_per_train"]["DI_cutoff"] = cutoff
dk.data["extra_returns_per_train"]["label_period_candles"] = (
- self.__optuna_period_params.get(pair, {}).get(
- "label_period_candles", self.ft_params["label_period_candles"]
- )
+ self.__optuna_period_params.get(
+ pair, {}
+ ).get("label_period_candles", self.ft_params["label_period_candles"])
)
dk.data["extra_returns_per_train"]["hp_rmse"] = self.__optuna_hp_rmse.get(
pair, -1
label_period_frequency: int = int(
fit_live_predictions_candles / (label_period_candles * 2)
)
- q = self.freqai_info.get("quantile", 0.67)
+ q = self.freqai_info.get("quantile", 0.75)
min_pred = pred_df_sorted.iloc[-label_period_frequency:].quantile(1 - q)
max_pred = pred_df_sorted.iloc[:label_period_frequency].quantile(q)
return min_pred[EXTREMA_COLUMN], max_pred[EXTREMA_COLUMN]
)
self.freqai_info["feature_parameters"][pair] = {}
self.freqai_info["feature_parameters"][pair]["label_period_candles"] = (
- self.__optuna_period_params[pair].get(
- "label_period_candles", self.ft_params["label_period_candles"]
- )
+ self.__optuna_period_params[
+ pair
+ ].get("label_period_candles", self.ft_params["label_period_candles"])
)
def fit(self, data_dictionary: Dict, dk: FreqaiDataKitchen, **kwargs) -> Any:
dk.data["extra_returns_per_train"]["DI_cutoff"] = cutoff
dk.data["extra_returns_per_train"]["label_period_candles"] = (
- self.__optuna_period_params.get(pair, {}).get(
- "label_period_candles", self.ft_params["label_period_candles"]
- )
+ self.__optuna_period_params.get(
+ pair, {}
+ ).get("label_period_candles", self.ft_params["label_period_candles"])
)
dk.data["extra_returns_per_train"]["hp_rmse"] = self.__optuna_hp_rmse.get(
pair, -1
label_period_frequency: int = int(
fit_live_predictions_candles / (label_period_candles * 2)
)
- q = self.freqai_info.get("quantile", 0.67)
+ q = self.freqai_info.get("quantile", 0.75)
min_pred = pred_df_sorted.iloc[-label_period_frequency:].quantile(1 - q)
max_pred = pred_df_sorted.iloc[:label_period_frequency].quantile(q)
return min_pred[EXTREMA_COLUMN], max_pred[EXTREMA_COLUMN]