]
dk.data["labels_mean"], dk.data["labels_std"] = {}, {}
- for ft in dk.label_list:
- # f = spy.stats.norm.fit(pred_df_full[ft])
- dk.data["labels_std"][ft] = 0 # f[1]
- dk.data["labels_mean"][ft] = 0 # f[0]
+ for label in dk.label_list + dk.unique_class_list:
+ if pred_df_full[label].dtype == object:
+ continue
+ if not warmed_up:
+ f = [0, 0]
+ else:
+ f = spy.stats.norm.fit(pred_df_full[label])
+ dk.data["labels_mean"][label] = f[0]
+ dk.data["labels_std"][label] = f[1]
# fit the DI_threshold
if not warmed_up:
]
dk.data["labels_mean"], dk.data["labels_std"] = {}, {}
- for ft in dk.label_list:
- # f = spy.stats.norm.fit(pred_df_full[ft])
- dk.data["labels_std"][ft] = 0 # f[1]
- dk.data["labels_mean"][ft] = 0 # f[0]
+ for label in dk.label_list + dk.unique_class_list:
+ if pred_df_full[label].dtype == object:
+ continue
+ if not warmed_up:
+ f = [0, 0]
+ else:
+ f = spy.stats.norm.fit(pred_df_full[label])
+ dk.data["labels_mean"][label] = f[0]
+ dk.data["labels_std"][label] = f[1]
# fit the DI_threshold
if not warmed_up: