natr_ratio: float = 6.0,
) -> tuple[list[int], list[float], list[int]]:
min_confirmation_window: int = 3
- max_confirmation_window: int = 5
+ max_confirmation_window: int = 6
n = len(df)
if df.empty or n < max(natr_period, 2 * max_confirmation_window + 1):
return [], [], []
def calculate_depth(
pos: int,
- min_depth: int = 8,
- max_depth: int = 28,
+ min_depth: int = 6,
+ max_depth: int = 24,
) -> int:
volatility_quantile = calculate_volatility_quantile(pos)
if np.isnan(volatility_quantile):
max_label_period_candles,
step=candles_step,
)
- label_natr_ratio = trial.suggest_float("label_natr_ratio", 2.0, 10.0, step=0.01)
+ label_natr_ratio = trial.suggest_float("label_natr_ratio", 3.0, 10.0, step=0.01)
df = df.iloc[
-(
natr_ratio: float = 6.0,
) -> tuple[list[int], list[float], list[int]]:
min_confirmation_window: int = 3
- max_confirmation_window: int = 5
+ max_confirmation_window: int = 6
n = len(df)
if df.empty or n < max(natr_period, 2 * max_confirmation_window + 1):
return [], [], []
def calculate_depth(
pos: int,
- min_depth: int = 8,
- max_depth: int = 28,
+ min_depth: int = 6,
+ max_depth: int = 24,
) -> int:
volatility_quantile = calculate_volatility_quantile(pos)
if np.isnan(volatility_quantile):