start = time.time()
if optuna_hyperopt:
pruner = optuna.pruners.MedianPruner(n_warmup_steps=5)
- study = optuna.create_study(pruner=pruner, direction="minimize")
+ study = optuna.create_study(
+ pruner=pruner,
+ direction="minimize",
+ )
study.optimize(
lambda trial: objective(
trial,
study_params = {
"objective": "rmse",
"n_estimators": trial.suggest_int("n_estimators", 100, 800),
- "num_leaves": trial.suggest_int("num_leaves", 20, 3000, step=10),
+ "num_leaves": trial.suggest_int("num_leaves", 2, 256),
"learning_rate": trial.suggest_float("learning_rate", 1e-3, 0.3, log=True),
- "min_child_samples": trial.suggest_int("min_child_samples", 10, 200),
+ "min_child_samples": trial.suggest_int("min_child_samples", 5, 100),
"subsample": trial.suggest_float("subsample", 0.6, 1.0),
"colsample_bytree": trial.suggest_float("colsample_bytree", 0.6, 1.0),
"reg_alpha": trial.suggest_float("reg_alpha", 1e-8, 10.0, log=True),