https://github.com/sponsors/robcaulk
"""
- version = "3.6.1"
+ version = "3.6.2"
def __init__(self, **kwargs):
super().__init__(**kwargs)
y_pred = model.predict(X_test)
min_label_period_candles: int = max(fit_live_predictions_candles // 20, 20)
- max_label_period_candles: int = max(
- fit_live_predictions_candles // 6, min_label_period_candles
+ max_label_period_candles: int = min(
+ max(fit_live_predictions_candles // 6, min_label_period_candles),
+ test_window // 2,
)
label_period_candles: int = trial.suggest_int(
"label_period_candles",
max_label_period_candles,
step=candles_step,
)
- label_window: int = label_period_candles * 2
+ label_window_length: int = label_period_candles * 2
label_windows_length: int = (
- fit_live_predictions_candles // label_window
- ) * label_window
+ test_window // label_window_length
+ ) * label_window_length
+ if label_windows_length == 0 or label_window_length > test_window:
+ return float("inf")
y_test_period = [
- y_test.iloc[-label_windows_length:].to_numpy()[i : i + label_window]
- for i in range(0, label_windows_length, label_window)
+ y_test.iloc[-label_windows_length:].to_numpy()[i : i + label_window_length]
+ for i in range(0, label_windows_length, label_window_length)
]
test_weights_period = [
- test_weights[-label_windows_length:][i : i + label_window]
- for i in range(0, label_windows_length, label_window)
+ test_weights[-label_windows_length:][i : i + label_window_length]
+ for i in range(0, label_windows_length, label_window_length)
]
y_pred_period = [
- y_pred[-label_windows_length:][i : i + label_window]
- for i in range(0, label_windows_length, label_window)
+ y_pred[-label_windows_length:][i : i + label_window_length]
+ for i in range(0, label_windows_length, label_window_length)
]
errors = [
https://github.com/sponsors/robcaulk
"""
- version = "3.6.1"
+ version = "3.6.2"
def __init__(self, **kwargs):
super().__init__(**kwargs)
y_pred = model.predict(X_test)
min_label_period_candles: int = max(fit_live_predictions_candles // 20, 20)
- max_label_period_candles: int = max(
- fit_live_predictions_candles // 6, min_label_period_candles
+ max_label_period_candles: int = min(
+ max(fit_live_predictions_candles // 6, min_label_period_candles),
+ test_window // 2,
)
label_period_candles: int = trial.suggest_int(
"label_period_candles",
max_label_period_candles,
step=candles_step,
)
- label_window: int = label_period_candles * 2
+ label_window_length: int = label_period_candles * 2
label_windows_length: int = (
- fit_live_predictions_candles // label_window
- ) * label_window
+ test_window // label_window_length
+ ) * label_window_length
+ if label_windows_length == 0 or label_window_length > test_window:
+ return float("inf")
y_test_period = [
- y_test.iloc[-label_windows_length:].to_numpy()[i : i + label_window]
- for i in range(0, label_windows_length, label_window)
+ y_test.iloc[-label_windows_length:].to_numpy()[i : i + label_window_length]
+ for i in range(0, label_windows_length, label_window_length)
]
test_weights_period = [
- test_weights[-label_windows_length:][i : i + label_window]
- for i in range(0, label_windows_length, label_window)
+ test_weights[-label_windows_length:][i : i + label_window_length]
+ for i in range(0, label_windows_length, label_window_length)
]
y_pred_period = [
- y_pred[-label_windows_length:][i : i + label_window]
- for i in range(0, label_windows_length, label_window)
+ y_pred[-label_windows_length:][i : i + label_window_length]
+ for i in range(0, label_windows_length, label_window_length)
]
errors = [