]> Piment Noir Git Repositories - freqai-strategies.git/commitdiff
refactor(qav3): code reformatting
authorJérôme Benoit <jerome.benoit@piment-noir.org>
Tue, 4 Mar 2025 21:55:49 +0000 (22:55 +0100)
committerJérôme Benoit <jerome.benoit@piment-noir.org>
Tue, 4 Mar 2025 21:55:49 +0000 (22:55 +0100)
Signed-off-by: Jérôme Benoit <jerome.benoit@piment-noir.org>
quickadapter/user_data/freqaimodels/LightGBMRegressorQuickAdapterV35.py
quickadapter/user_data/freqaimodels/XGBoostRegressorQuickAdapterV35.py

index c095527f9b9ed353b1c76b6b2065d20fa26e9937..eeef89f5e94d0d10831fb4979160114477f33ee5 100644 (file)
@@ -70,9 +70,9 @@ class LightGBMRegressorQuickAdapterV35(BaseRegressionModel):
             )
             self.freqai_info["feature_parameters"][pair] = {}
             self.freqai_info["feature_parameters"][pair]["label_period_candles"] = (
-                self.__optuna_period_params[
-                    pair
-                ].get("label_period_candles", self.ft_params["label_period_candles"])
+                self.__optuna_period_params[pair].get(
+                    "label_period_candles", self.ft_params["label_period_candles"]
+                )
             )
 
     def fit(self, data_dictionary: Dict, dk: FreqaiDataKitchen, **kwargs) -> Any:
@@ -230,9 +230,9 @@ class LightGBMRegressorQuickAdapterV35(BaseRegressionModel):
         dk.data["extra_returns_per_train"]["DI_cutoff"] = cutoff
 
         dk.data["extra_returns_per_train"]["label_period_candles"] = (
-            self.__optuna_period_params.get(
-                pair, {}
-            ).get("label_period_candles", self.ft_params["label_period_candles"])
+            self.__optuna_period_params.get(pair, {}).get(
+                "label_period_candles", self.ft_params["label_period_candles"]
+            )
         )
         dk.data["extra_returns_per_train"]["hp_rmse"] = self.__optuna_hp_rmse.get(
             pair, -1
index 076b40e0e0b5c53a77c7b41d598961c1026663a6..3936076951fd83978a46fcd6e215fefb6398ecc0 100644 (file)
@@ -70,9 +70,9 @@ class XGBoostRegressorQuickAdapterV35(BaseRegressionModel):
             )
             self.freqai_info["feature_parameters"][pair] = {}
             self.freqai_info["feature_parameters"][pair]["label_period_candles"] = (
-                self.__optuna_period_params[
-                    pair
-                ].get("label_period_candles", self.ft_params["label_period_candles"])
+                self.__optuna_period_params[pair].get(
+                    "label_period_candles", self.ft_params["label_period_candles"]
+                )
             )
 
     def fit(self, data_dictionary: Dict, dk: FreqaiDataKitchen, **kwargs) -> Any:
@@ -231,9 +231,9 @@ class XGBoostRegressorQuickAdapterV35(BaseRegressionModel):
         dk.data["extra_returns_per_train"]["DI_cutoff"] = cutoff
 
         dk.data["extra_returns_per_train"]["label_period_candles"] = (
-            self.__optuna_period_params.get(
-                pair, {}
-            ).get("label_period_candles", self.ft_params["label_period_candles"])
+            self.__optuna_period_params.get(pair, {}).get(
+                "label_period_candles", self.ft_params["label_period_candles"]
+            )
         )
         dk.data["extra_returns_per_train"]["hp_rmse"] = self.__optuna_hp_rmse.get(
             pair, -1