from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
import pandas as pd
import numpy as np
-import scipy as spy
+import scipy as sp
import optuna
import sklearn
import warnings
if not warmed_up:
f = [0, 0]
else:
- f = spy.stats.norm.fit(pred_df_full[label])
+ f = sp.stats.norm.fit(pred_df_full[label])
dk.data["labels_mean"][label], dk.data["labels_std"][label] = f[0], f[1]
# fit the DI_threshold
else:
di_values = pd.to_numeric(pred_df_full["DI_values"], errors="coerce")
di_values = di_values.dropna()
- f = spy.stats.weibull_min.fit(di_values)
- cutoff = spy.stats.weibull_min.ppf(
+ f = sp.stats.weibull_min.fit(di_values)
+ cutoff = sp.stats.weibull_min.ppf(
self.freqai_info.get("outlier_threshold", 0.999), *f
)
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
import pandas as pd
import numpy as np
-import scipy as spy
+import scipy as sp
import optuna
import sklearn
import warnings
if not warmed_up:
f = [0, 0]
else:
- f = spy.stats.norm.fit(pred_df_full[label])
+ f = sp.stats.norm.fit(pred_df_full[label])
dk.data["labels_mean"][label], dk.data["labels_std"][label] = f[0], f[1]
# fit the DI_threshold
else:
di_values = pd.to_numeric(pred_df_full["DI_values"], errors="coerce")
di_values = di_values.dropna()
- f = spy.stats.weibull_min.fit(di_values)
- cutoff = spy.stats.weibull_min.ppf(
+ f = sp.stats.weibull_min.fit(di_values)
+ cutoff = sp.stats.weibull_min.ppf(
self.freqai_info.get("outlier_threshold", 0.999), *f
)