model_training_parameters,
) -> float:
study_parameters = {
- "n_estimators": trial.suggest_int("n_estimators", 100, 2000, step=10),
+ "n_estimators": trial.suggest_int("n_estimators", 100, 2000, step=100),
"num_leaves": trial.suggest_int("num_leaves", 2, 256),
"learning_rate": trial.suggest_float("learning_rate", 1e-3, 0.3, log=True),
"min_child_samples": trial.suggest_int("min_child_samples", 5, 100),
model_training_parameters,
) -> float:
study_parameters = {
- "n_estimators": trial.suggest_int("n_estimators", 100, 2000, step=10),
+ "n_estimators": trial.suggest_int("n_estimators", 100, 2000, step=100),
"learning_rate": trial.suggest_float("learning_rate", 1e-3, 0.3, log=True),
"max_depth": trial.suggest_int("max_depth", 3, 18),
"min_child_weight": trial.suggest_int("min_child_weight", 1, 200),