Une stratégie commune est de calculer $ (x_{k+1},\lambda_{k+1},\mu_{k+1}) $ pour une matrice $ H_k $ donnée et faire une mise à jour de $ H_k $ de rang 1 ou 2 :
$$ H_{k+1} = H_k + U_k $$
% \subsubsection{Mises à jour DFP et BFGS}
-Les méthodes de mise à jour DFP et BFGS suivent par exemple cette stratégie.
+Les méthodes de mises à jour DFP et BFGS suivent par exemple cette stratégie.
\subsection{Exemple d'utilisation de PQS}
\newline
\newfloat{algorithm}{t}
-%\begin{algorithm}
- \begin{algorithmic}
- \REQUIRE $(x_0,y_0,z_0) = (100, 100 ,0), g(x_0,y_0,z_0) \leq 0$
- \ENSURE $\displaystyle\min_{(x,y,z) \in \mathbb{R}^3} J(x,y,z) = x^2 + y^2 + z^2 -r^2$ and \newline $g(x,y,z) = (g_1(x,y,z), g_2(x,y,z)) = (x^2 + y^2 - r_1^2, x^2 + z^2 -r_2^2) \leq 0 $
- \STATE \textbf{Data :}
- \STATE $k \leftarrow 0, (x_k, y_k, z_k) \leftarrow (100, 100, 0), r \leftarrow 100$
- \STATE $r_1 = r_2 \leftarrow 10, \varepsilon \leftarrow 0.01$
- \STATE $\lambda_1 = \lambda_2 \leftarrow 1$
- \STATE $s_k \leftarrow \frac{1}{2}$
- \STATE $ H[J](x,y,z)^{-1} \leftarrow
- \begin{pmatrix}
- 0.5 & 0 & 0 \\
- 0 & 0.5 & 0 \\
- 0 & 0 & 0.5 \\
- \end{pmatrix} $
- \newline
-
- \WHILE{$ (\norme{\nabla L(x_k,\lambda_k,\mu_k)} > \varepsilon $ or k $ \leq 10)$}
-
- \STATE {//Première itération :}
- \STATE {//Calcul du gradient de $ J $ :}
- \STATE $ \nabla J(x_k,y_k,z_k) = (2x_k,2y_k,2z_k)$ \hfill $ //résultat : (200,200,0) $
- \newline
- % \STATE {//Calcul des deux composantes du gradient de $ g $:}
- % \STATE $ \nabla g_1(x_k,y_k,z_k) = (2x_k,2y_k,0)$ \hfill $ //résultat : (200, 200, 0)$
- % \STATE $ \nabla g_2(x_k,y_k,z_k) = (2x_k,0,2z_k)$ \hfill $ //résultat : (200, 0, 0)$
- % \STATE $ \nabla g(x_k,y_k,z_k) = (\nabla g_1(x_k,y_k,z_k), \nabla g_2(x_k,y_k,z_k))$
- % \newline
- \STATE {//Calcul du gradient de $ L $ :}
- \STATE $\nabla L((x_k,y_k,z_k),(\lambda_1,\lambda_2)) = \nabla J(x_k,y_k,z_k) + \lambda_1 \nabla g_1(x_k,y_k,z_k) + \lambda_2 \nabla g_2(x_k,y_k,z_k)) $ \hfill $//résultat : (600, 400, 0)$
- \STATE $ \varepsilon_k = \norme{\nabla L((x_k,y_k,z_k),(\lambda_1,\lambda_2))}$
- % \STATE $ \nabla L((x_k,y_k,z_k),(\lambda_1,\lambda_2)) = (x_L , y_L, z_L) $
- \newline
- \STATE {//Calcul de la direction de la pente $ d_k $ (méthode de Newton) :}
- \STATE $ d_k = -H[J](x_k,y_k,z_k)^{-1} * \nabla J(x_k,y_k,z_k)$ \hfill $ //résultat : (-(100,100,0))$
- \newline
- \STATE {//Calcul des nouvelles valeurs des coordonnées}
- \STATE $ (x_{k+1},y_{k+1},z_{k+1}) = (x_k,y_k,z_k) + s_k d_k $ \hfill $ //résultat : (50,50,0)$
- \newline
- \STATE {//Incrémentation de $ k $}
- \STATE $ k \leftarrow k + 1$ \hfill $ //résultat : k = 1$
- \newline
-
- \STATE {//Deuxième itération :}
- \STATE {//Calcul du gradient de $ J $ :}
- \STATE $ \nabla J(x_k,y_k,z_k) = (2x_k,2y_k,2z_k)$ \hfill $ //résultat : (100,100,0) $
- \newline
- \STATE {//Calcul du gradient de $ L $ :}
- \STATE $\nabla L((x_k,y_k,z_k),(\lambda_1,\lambda_2)) = \nabla J(x_k,y_k,z_k) + \lambda_1 \nabla g_1(x_k,y_k,z_k) + \lambda_2 \nabla g_2(x_k,y_k,z_k)) $ \hfill $//résultat : (6*50, 4*50, 0)$
- \STATE $ \varepsilon_k = \norme{\nabla L((x_k,y_k,z_k),(\lambda_1,\lambda_2))}$
- \newline
- \STATE {//Calcul de la direction de la pente $ d_k $ (méthode de Newton) :}
- \STATE $ d_k = -H[J](x_k,y_k,z_k)^{-1} * \nabla J(x_k,y_k,z_k)$ \hfill $ //résultat : (-(50,50,0))$
- \STATE {//Calcul des nouvelles valeurs des coordonnées}
- \STATE $ (x_{k+1},y_{k+1},z_{k+1}) = (x_k,y_k,z_k) + s_k d_k $ \hfill $ //résultat : (25,25,0)$
- \newline
- \STATE {//Incrémentation de $ k $ }
- \STATE $ k \leftarrow k + 1$ \hfill $ //résultat : k = 2$
- \newline
-
- \STATE {//Troisième itération :}
- \STATE {//Calcul du gradient de $ J $:}
- \STATE $ \nabla J(x_k,y_k,z_k) = (2x_k,2y_k,2z_k)$ \hfill $ //résultat : (50,50,0) $
- \newline
- \STATE {//Calcul du gradient de $ L $ :}
- \STATE $\nabla L((x_k,y_k,z_k),(\lambda_1,\lambda_2)) = \nabla J(x_k,y_k,z_k) + \lambda_1 \nabla g_1(x_k,y_k,z_k) + \lambda_2 \nabla g_2(x_k,y_k,z_k)) $ \hfill $//résultat : (6*25, 4*25, 0)$
- \STATE $ \varepsilon_k = \norme{\nabla L((x_k,y_k,z_k),(\lambda_1,\lambda_2))}$
- \newline
- \STATE {//Calcul de la direction de la pente $ d_k $ (méthode de Newton) :}
- \STATE $ d_k = -H[J](x,y,z)^{-1} * \nabla J(x_k,y_k,z_k)$ \hfill $ //résultat : (-(25,25,0))$
- \STATE {//Calcul des nouvelles valeurs des coordonnées}
- \newline
- \STATE $ (x_{k+1},y_{k+1},z_{k+1}) = (x_k,y_k,z_k) + s_k d_k $ \hfill $ //résultat : (12.5,12.5,0)$
- \STATE {//Incrémentation de $ k $}
- \STATE $ k \leftarrow k + 1$ \hfill $ //résultat : k = 3$
- \newline
-
- \STATE {//Quatrième itération :}
- \STATE {//Calcul du gradient de $ J $ :}
- \STATE $ \nabla J(x_k,y_k,z_k) = (2x_k,2y_k,2z_k)$ \hfill $ //résultat : (25,25,0) $
- \newline
- \STATE {//Calcul du gradient de $ L $ :}
- \STATE $\nabla L((x_k,y_k,z_k),(\lambda_1,\lambda_2)) = \nabla J(x_k,y_k,z_k) + \lambda_1 \nabla g_1(x_k,y_k,z_k) + \lambda_2 \nabla g_2(x_k,y_k,z_k)) $ \hfill $//résultat : (6*12.5, 4*12.5, 0)$
- \STATE $ \varepsilon_k = \norme{\nabla L((x_k,y_k,z_k),(\lambda_1,\lambda_2))}$
- \newline
- \STATE {//Calcul de la direction de la pente $ d_k $ (méthode de Newton) :}
- \STATE $ d_k = -H[J](x_k,y_k,z_k)^{-1} * \nabla J(x_k,y_k,z_k)$ \hfill $ //résultat : (-(12.5,12.5,0))$
- \newline
- \STATE {//Calcul des nouvelles valeurs des coordonnées}
- \STATE $ (x_{k+1},y_{k+1},z_{k+1}) = (x_k,y_k,z_k) + s_k d_k $ \hfill $ //résultat : (6.25,6.25,0)$
- \STATE {//Incrémentation de $ k $}
- \newline
- \STATE $ k \leftarrow k + 1$ \hfill $ //résultat : k = 4$
- \newline
-
- \STATE {//Cinquième itération :}
- \STATE {//Calcul du gradient de $ J $ :}
- \STATE $ \nabla J(x_k,y_k,z_k) = (2x_k,2y_k,2z_k)$ \hfill $ //résultat : (12.5,12.5,0) $
- \newline
- \STATE {//Calcul du gradient de $ L $ :}
- \STATE $\nabla L((x_k,y_k,z_k),(\lambda_1,\lambda_2)) = \nabla J(x_k,y_k,z_k) + \lambda_1 \nabla g_1(x_k,y_k,z_k) + \lambda_2 \nabla g_2(x_k,y_k,z_k)) $ \hfill $//résultat : (6*6.25, 4*6.25, 0)$
- \STATE $ \varepsilon_k = \norme{\nabla L((x_k,y_k,z_k),(\lambda_1,\lambda_2))}$
- \newline
- \STATE {//Calcul de la direction de la pente $ d_k $ (méthode de Newton) :}
- \STATE $ d_k = -H[J](x_k,y_k,z_k)^{-1} * \nabla J(x_k,y_k,z_k)$ \hfill $ //résultat : (-(6.25,6.25,0))$
- \newline
- \STATE {//Calcul des nouvelles valeurs des coordonnées}
- \STATE $ (x_{k+1},y_{k+1},z_{k+1}) = (x_k,y_k,z_k) + s_k d_k $ \hfill $ //résultat : (3.125,3.125,0)$
- \newline
- \STATE {//Incrémentation de $ k $}
- \STATE $ k \leftarrow k + 1$ \hfill $ //résultat : k = 5$
- \newline
-
- \STATE {//Sixième itération :}
- \STATE {//Calcul du gradient de $ J $ :}
- \STATE $ \nabla J(x_k,y_k,z_k) = (2x_k,2y_k,2z_k)$ \hfill $ //résultat : (6.25,6.25,0) $
- \newline
- \STATE {//Calcul du gradient de $ L $ :}
- \STATE $\nabla L((x_k,y_k,z_k),(\lambda_1,\lambda_2)) = \nabla J(x_k,y_k,z_k) + \lambda_1 \nabla g_1(x_k,y_k,z_k) + \lambda_2 \nabla g_2(x_k,y_k,z_k)) $ \hfill $//résultat : (6*3.125, 4*3.125, 0)$
- \STATE $ \varepsilon_k = \norme{\nabla L((x_k,y_k,z_k),(\lambda_1,\lambda_2))}$
- \newline
- \STATE {//Calcul de la direction de la pente $ d_k $ (méthode de Newton) :}
- \STATE $ d_k = -H[J](x_k,y_k,z_k)^{-1} * \nabla J(x_k,y_k,z_k)$ \hfill $ //résultat : (-(1.5625,1.5625,0))$
- \STATE {//Calcul des nouvelles valeurs des coordonnées}
- \newline
- \STATE $ (x_{k+1},y_{k+1},z_{k+1}) = (x_k,y_k,z_k) + s_k d_k $ \hfill $ //résultat : (1.5625,1.5625,0)$
- \STATE {//Incrémentation de $ k $}
- \newline
- \STATE $ k \leftarrow k + 1$ \hfill $ //résultat : k = 6$
- \newline
-
- \STATE {//Septième itération :}
- \STATE {//Calcul du gradient de $ J $ :}
- \STATE $ \nabla J(x_k,y_k,z_k) = (2x_k,2y_k,2z_k)$ \hfill $ //résultat : (3.125, 3.125, 0) $
- \newline
- \STATE {//Calcul du gradient de $ L $ : }
- \STATE $\nabla L((x_k,y_k,z_k),(\lambda_1,\lambda_2)) = \nabla J(x_k,y_k,z_k) + \lambda_1 \nabla g_1(x_k,y_k,z_k) + \lambda_2 \nabla g_2(x_k,y_k,z_k)) $ \hfill $//résultat : (6*1.5625, 4*1.5625, 0)$
- \STATE $ \varepsilon_k = \norme{\nabla L((x_k,y_k,z_k),(\lambda_1,\lambda_2))}$
- \newline
- \STATE {//Calcul de la direction de la pente $ d_k $ (méthode de Newton) :}
- \STATE $ d_k = -H[J](x_k,y_k,z_k)^{-1} * \nabla J(x_k,y_k,z_k)$ \hfill $ //résultat : (-(0.78125,0.78125,0))$
- \STATE {//Calcul des nouvelles valeurs des coordonnées}
- \newline
- \STATE $ (x_{k+1},y_{k+1},z_{k+1}) = (x_k,y_k,z_k) + s_k d_k $ \hfill $ //résultat : (0.78125,0.78125,0)$
- \STATE {//Incrémentation de $ k $}
- \newline
- \STATE $ k \leftarrow k + 1$ \hfill $ //résultat : k = 7$
- \newline
-
- \STATE {//Huitième itération :}
- \STATE{//Calcul du gradient de $ J $ :}
- \STATE $ \nabla J(x_k,y_k,z_k) = (2x_k,2y_k,2z_k)$ \hfill $ //résultat : (1.5625, 1.5625, 0) $
- \newline
- \STATE {//Calcul du gradient de $ L $ : }
- \STATE $\nabla L((x_k,y_k,z_k),(\lambda_1,\lambda_2)) = \nabla J(x_k,y_k,z_k) + \lambda_1 \nabla g_1(x_k,y_k,z_k) + \lambda_2 \nabla g_2(x_k,y_k,z_k)) $ \hfill $//résultat : (6*0.78125, 4*0.78125, 0)$
- \STATE $ \varepsilon_k = \norme{\nabla L((x_k,y_k,z_k),(\lambda_1,\lambda_2))}$
- \newline
- \STATE {//Calcul de la direction de la pente $ d_k $ (méthode de Newton) :}
- \STATE $ d_k = -H[J](x_k,y_k,z_k)^{-1} * \nabla J(x_k,y_k,z_k)$ \hfill $ //résultat : (-(0.390625,0.390625,0))$
- \newline
- \STATE {//Calcul des nouvelles valeurs des coordonnées}
- \STATE $ (x_{k+1},y_{k+1},z_{k+1}) = (x_k,y_k,z_k) + s_k d_k $ \hfill $ //résultat : (0.390625,0.390625,0)$
- \newline
- \STATE {//Incrémentation de $ k $}
- \STATE $ k \leftarrow k + 1$ \hfill $ //résulat : k = 8$
- \newline
-
- \STATE {//Neuvième itération :}
- \STATE {//Calcul du gradient de $ J $ :}
- \STATE $ \nabla J(x_k,y_k,z_k) = (2x_k,2y_k,2z_k)$ \hfill $ //résultat : (0.78125, 0.78125, 0) $
- \newline
- \STATE {//Calcul du gradient de $ L $ :}
- \STATE $\nabla L((x_k,y_k,z_k),(\lambda_1,\lambda_2)) = \nabla J(x_k,y_k,z_k) + \lambda_1 \nabla g_1(x_k,y_k,z_k) + \lambda_2 \nabla g_2(x_k,y_k,z_k)) $ \hfill $//résultat : (6*0.390625, 4*0.390625, 0)$
- \STATE $ \varepsilon_k = \norme{\nabla L((x_k,y_k,z_k),(\lambda_1,\lambda_2))}$
- \newline
- \STATE {//Calcul de la direction de la pente $ d_k $ (méthode de Newton) :}
- \STATE $ d_k = -H[J](x_k,y_k,z_k)^{-1} * \nabla J(x_k,y_k,z_k)$ \hfill $ //résultat : (-(0.1953125,0.1953125,0))$
- \newline
- \STATE {//Calcul des nouvelles valeurs des coordonnées}
- \STATE $ (x_{k+1},y_{k+1},z_{k+1}) = (x_k,y_k,z_k) + s_k d_k $ \hfill $ //résultat : (0.1953125,0.1953125,0)$
- \newline
- \STATE {//Incrémentation de $ k $}
- \STATE $ k \leftarrow k + 1 \hfill //résultat : k = 9$
- \newline
-
- \STATE {//Dixième itération :}
- \STATE {//Calcul du gradient de $ J $ :}
- \STATE $ \nabla J(x_k,y_k,z_k) = (2x_k,2y_k,2z_k)$ \hfill $ //résultat : (0.390625, 0.390625, 0) $
- \newline
- \STATE {//Calcul du gradient de $ L $ :}
- \STATE $\nabla L((x_k,y_k,z_k),(\lambda_1,\lambda_2)) = \nabla J(x_k,y_k,z_k) + \lambda_1 \nabla g_1(x_k,y_k,z_k) + \lambda_2 \nabla g_2(x_k,y_k,z_k)) $ \hfill $//résultat : (6*0.1953125, 4*0.1953125, 0)$
- \STATE $ \varepsilon_k = \norme{\nabla L((x_k,y_k,z_k),(\lambda_1,\lambda_2))}$
- \newline
- \STATE {//Calcul de la direction de la pente $ d_k $ (méthode de Newton) :}
- \STATE $ d_k = -H[J](x_k,y_k,z_k)^{-1} * \nabla J(x_k,y_k,z_k)$ \hfill $ //résultat : (-(0.097665625,0.097665625,0))$
- \newline
- \STATE {//Calcul des nouvelles valeurs des coordonnées}
- \STATE $ (x_{k+1},y_{k+1},z_{k+1}) = (x_k,y_k,z_k) + s_k d_k $ \hfill $ //résultat : (0.097665625,0.097665625,0)$
- \newline
- \STATE {//Incrémentation de $ k $}
- \STATE $ k \leftarrow k + 1$ \hfill $ //résultat : k = 10$
- \newline
- \STATE {//Fin de la boucle "while" car nous avons atteint $ k = 10 $, condition mettant fin à la //boucle}
- \newline
-
- \ENDWHILE
-
-
- \end{algorithmic}
-%\end{floatalgo}
- %\end{algorithm}
+\begin{algorithmic}
+ \REQUIRE $(x_0,y_0,z_0) = (100, 100 ,0), g(x_0,y_0,z_0) \leq 0$
+ \ENSURE $\displaystyle\min_{(x,y,z) \in \mathbb{R}^3} J(x,y,z) = x^2 + y^2 + z^2 -r^2$ and \newline $g(x,y,z) = (g_1(x,y,z), g_2(x,y,z)) = (x^2 + y^2 - r_1^2, x^2 + z^2 -r_2^2) \leq 0$
+ \STATE \textbf{Data :}
+ \STATE $k \leftarrow 0, (x_k, y_k, z_k) \leftarrow (100, 100, 0), r \leftarrow 100$
+ \STATE $r_1 = r_2 \leftarrow 10, \varepsilon \leftarrow 0.01$
+ \STATE $\lambda_1 = \lambda_2 \leftarrow 1$
+ \STATE $s_k \leftarrow \frac{1}{2}$
+ \STATE $ H[J](x,y,z)^{-1} \leftarrow
+ \begin{pmatrix}
+ 0.5 & 0 & 0 \\
+ 0 & 0.5 & 0 \\
+ 0 & 0 & 0.5 \\
+ \end{pmatrix} $
+ \newline
+
+ \WHILE{$ (\norme{\nabla L(x_k,\lambda_k,\mu_k)} > \varepsilon $ or k $ \leq 10)$}
+
+ \STATE {//Première itération :}
+ \STATE {//Calcul du gradient de $ J $ :}
+ \STATE $ \nabla J(x_k,y_k,z_k) = (2x_k,2y_k,2z_k)$ \hfill $ //résultat : (200,200,0) $
+ \newline
+ % \STATE {//Calcul des deux composantes du gradient de $ g $:}
+ % \STATE $ \nabla g_1(x_k,y_k,z_k) = (2x_k,2y_k,0)$ \hfill $ //résultat : (200, 200, 0)$
+ % \STATE $ \nabla g_2(x_k,y_k,z_k) = (2x_k,0,2z_k)$ \hfill $ //résultat : (200, 0, 0)$
+ % \STATE $ \nabla g(x_k,y_k,z_k) = (\nabla g_1(x_k,y_k,z_k), \nabla g_2(x_k,y_k,z_k))$
+ % \newline
+ \STATE {//Calcul du gradient de $ L $ :}
+ \STATE $\nabla L((x_k,y_k,z_k),(\lambda_1,\lambda_2)) = \nabla J(x_k,y_k,z_k) + \lambda_1 \nabla g_1(x_k,y_k,z_k) + \lambda_2 \nabla g_2(x_k,y_k,z_k)) $ \hfill $ //résultat : (600, 400, 0)$
+ \STATE $ \varepsilon_k = \norme{\nabla L((x_k,y_k,z_k),(\lambda_1,\lambda_2))}$
+ % \STATE $ \nabla L((x_k,y_k,z_k),(\lambda_1,\lambda_2)) = (x_L , y_L, z_L) $
+ \newline
+ \STATE {//Calcul de la direction de la pente $ d_k $ (méthode de Newton) :}
+ \STATE $ d_k = -H[J](x_k,y_k,z_k)^{-1} * \nabla J(x_k,y_k,z_k) $ \hfill $ //résultat : (-(100,100,0))$
+ \newline
+ \STATE {//Calcul des nouvelles valeurs des coordonnées}
+ \STATE $ (x_{k+1},y_{k+1},z_{k+1}) = (x_k,y_k,z_k) + s_k d_k $ \hfill $ //résultat : (50,50,0)$
+ \newline
+ \STATE {//Incrémentation de $ k $}
+ \STATE $ k \leftarrow k + 1 $ \hfill $ //résultat : k = 1$
+ \newline
+
+ \STATE {//Deuxième itération :}
+ \STATE {//Calcul du gradient de $ J $ :}
+ \STATE $ \nabla J(x_k,y_k,z_k) = (2x_k,2y_k,2z_k)$ \hfill $ //résultat : (100,100,0) $
+ \newline
+ \STATE {//Calcul du gradient de $ L $ :}
+ \STATE $\nabla L((x_k,y_k,z_k),(\lambda_1,\lambda_2)) = \nabla J(x_k,y_k,z_k) + \lambda_1 \nabla g_1(x_k,y_k,z_k) + \lambda_2 \nabla g_2(x_k,y_k,z_k)) $ \hfill $ //résultat : (6*50, 4*50, 0)$
+ \STATE $ \varepsilon_k = \norme{\nabla L((x_k,y_k,z_k),(\lambda_1,\lambda_2))}$
+ \newline
+ \STATE {//Calcul de la direction de la pente $ d_k $ (méthode de Newton) :}
+ \STATE $ d_k = -H[J](x_k,y_k,z_k)^{-1} * \nabla J(x_k,y_k,z_k) $ \hfill $ //résultat : (-(50,50,0))$
+ \STATE {//Calcul des nouvelles valeurs des coordonnées}
+ \STATE $ (x_{k+1},y_{k+1},z_{k+1}) = (x_k,y_k,z_k) + s_k d_k $ \hfill $ //résultat : (25,25,0)$
+ \newline
+ \STATE {//Incrémentation de $ k $ }
+ \STATE $ k \leftarrow k + 1 $ \hfill $ //résultat : k = 2$
+ \newline
+
+ \STATE {//Troisième itération :}
+ \STATE {//Calcul du gradient de $ J $:}
+ \STATE $ \nabla J(x_k,y_k,z_k) = (2x_k,2y_k,2z_k)$ \hfill $ //résultat : (50,50,0) $
+ \newline
+ \STATE {//Calcul du gradient de $ L $ :}
+ \STATE $\nabla L((x_k,y_k,z_k),(\lambda_1,\lambda_2)) = \nabla J(x_k,y_k,z_k) + \lambda_1 \nabla g_1(x_k,y_k,z_k) + \lambda_2 \nabla g_2(x_k,y_k,z_k)) $ \hfill $ //résultat : (6*25, 4*25, 0)$
+ \STATE $ \varepsilon_k = \norme{\nabla L((x_k,y_k,z_k),(\lambda_1,\lambda_2))}$
+ \newline
+ \STATE {//Calcul de la direction de la pente $ d_k $ (méthode de Newton) :}
+ \STATE $ d_k = -H[J](x,y,z)^{-1} * \nabla J(x_k,y_k,z_k) $ \hfill $ //résultat : (-(25,25,0))$
+ \STATE {//Calcul des nouvelles valeurs des coordonnées}
+ \newline
+ \STATE $ (x_{k+1},y_{k+1},z_{k+1}) = (x_k,y_k,z_k) + s_k d_k $ \hfill $ //résultat : (12.5,12.5,0)$
+ \STATE {//Incrémentation de $ k $}
+ \STATE $ k \leftarrow k + 1 $ \hfill $ //résultat : k = 3$
+ \newline
+
+ \STATE {//Quatrième itération :}
+ \STATE {//Calcul du gradient de $ J $ :}
+ \STATE $ \nabla J(x_k,y_k,z_k) = (2x_k,2y_k,2z_k)$ \hfill $ //résultat : (25,25,0) $
+ \newline
+ \STATE {//Calcul du gradient de $ L $ :}
+ \STATE $\nabla L((x_k,y_k,z_k),(\lambda_1,\lambda_2)) = \nabla J(x_k,y_k,z_k) + \lambda_1 \nabla g_1(x_k,y_k,z_k) + \lambda_2 \nabla g_2(x_k,y_k,z_k)) $ \hfill $ //résultat : (6*12.5, 4*12.5, 0)$
+ \STATE $ \varepsilon_k = \norme{\nabla L((x_k,y_k,z_k),(\lambda_1,\lambda_2))}$
+ \newline
+ \STATE {//Calcul de la direction de la pente $ d_k $ (méthode de Newton) :}
+ \STATE $ d_k = -H[J](x_k,y_k,z_k)^{-1} * \nabla J(x_k,y_k,z_k) $ \hfill $ //résultat : (-(12.5,12.5,0))$
+ \newline
+ \STATE {//Calcul des nouvelles valeurs des coordonnées}
+ \STATE $ (x_{k+1},y_{k+1},z_{k+1}) = (x_k,y_k,z_k) + s_k d_k $ \hfill $ //résultat : (6.25,6.25,0)$
+ \STATE {//Incrémentation de $ k $}
+ \newline
+ \STATE $ k \leftarrow k + 1 $ \hfill $ //résultat : k = 4$
+ \newline
+
+ \STATE {//Cinquième itération :}
+ \STATE {//Calcul du gradient de $ J $ :}
+ \STATE $ \nabla J(x_k,y_k,z_k) = (2x_k,2y_k,2z_k)$ \hfill $ //résultat : (12.5,12.5,0) $
+ \newline
+ \STATE {//Calcul du gradient de $ L $ :}
+ \STATE $\nabla L((x_k,y_k,z_k),(\lambda_1,\lambda_2)) = \nabla J(x_k,y_k,z_k) + \lambda_1 \nabla g_1(x_k,y_k,z_k) + \lambda_2 \nabla g_2(x_k,y_k,z_k)) $ \hfill $ //résultat : (6*6.25, 4*6.25, 0)$
+ \STATE $ \varepsilon_k = \norme{\nabla L((x_k,y_k,z_k),(\lambda_1,\lambda_2))}$
+ \newline
+ \STATE {//Calcul de la direction de la pente $ d_k $ (méthode de Newton) :}
+ \STATE $ d_k = -H[J](x_k,y_k,z_k)^{-1} * \nabla J(x_k,y_k,z_k) $ \hfill $ //résultat : (-(6.25,6.25,0))$
+ \newline
+ \STATE {//Calcul des nouvelles valeurs des coordonnées}
+ \STATE $ (x_{k+1},y_{k+1},z_{k+1}) = (x_k,y_k,z_k) + s_k d_k $ \hfill $ //résultat : (3.125,3.125,0)$
+ \newline
+ \STATE {//Incrémentation de $ k $}
+ \STATE $ k \leftarrow k + 1 $ \hfill $ //résultat : k = 5$
+ \newline
+
+ \STATE {//Sixième itération :}
+ \STATE {//Calcul du gradient de $ J $ :}
+ \STATE $ \nabla J(x_k,y_k,z_k) = (2x_k,2y_k,2z_k)$ \hfill $ //résultat : (6.25,6.25,0) $
+ \newline
+ \STATE {//Calcul du gradient de $ L $ :}
+ \STATE $\nabla L((x_k,y_k,z_k),(\lambda_1,\lambda_2)) = \nabla J(x_k,y_k,z_k) + \lambda_1 \nabla g_1(x_k,y_k,z_k) + \lambda_2 \nabla g_2(x_k,y_k,z_k)) $ \hfill $ //résultat : (6*3.125, 4*3.125, 0)$
+ \STATE $ \varepsilon_k = \norme{\nabla L((x_k,y_k,z_k),(\lambda_1,\lambda_2))}$
+ \newline
+ \STATE {//Calcul de la direction de la pente $ d_k $ (méthode de Newton) :}
+ \STATE $ d_k = -H[J](x_k,y_k,z_k)^{-1} * \nabla J(x_k,y_k,z_k) $ \hfill $ //résultat : (-(1.5625,1.5625,0))$
+ \STATE {//Calcul des nouvelles valeurs des coordonnées}
+ \newline
+ \STATE $ (x_{k+1},y_{k+1},z_{k+1}) = (x_k,y_k,z_k) + s_k d_k $ \hfill $ //résultat : (1.5625,1.5625,0)$
+ \STATE {//Incrémentation de $ k $}
+ \newline
+ \STATE $ k \leftarrow k + 1 $ \hfill $ //résultat : k = 6$
+ \newline
+
+ \STATE {//Septième itération :}
+ \STATE {//Calcul du gradient de $ J $ :}
+ \STATE $ \nabla J(x_k,y_k,z_k) = (2x_k,2y_k,2z_k)$ \hfill $ //résultat : (3.125, 3.125, 0) $
+ \newline
+ \STATE {//Calcul du gradient de $ L $ : }
+ \STATE $\nabla L((x_k,y_k,z_k),(\lambda_1,\lambda_2)) = \nabla J(x_k,y_k,z_k) + \lambda_1 \nabla g_1(x_k,y_k,z_k) + \lambda_2 \nabla g_2(x_k,y_k,z_k)) $ \hfill $ //résultat : (6*1.5625, 4*1.5625, 0)$
+ \STATE $ \varepsilon_k = \norme{\nabla L((x_k,y_k,z_k),(\lambda_1,\lambda_2))}$
+ \newline
+ \STATE {//Calcul de la direction de la pente $ d_k $ (méthode de Newton) :}
+ \STATE $ d_k = -H[J](x_k,y_k,z_k)^{-1} * \nabla J(x_k,y_k,z_k) $ \hfill $ //résultat : (-(0.78125,0.78125,0))$
+ \STATE {//Calcul des nouvelles valeurs des coordonnées}
+ \newline
+ \STATE $ (x_{k+1},y_{k+1},z_{k+1}) = (x_k,y_k,z_k) + s_k d_k $ \hfill $ //résultat : (0.78125,0.78125,0)$
+ \STATE {//Incrémentation de $ k $}
+ \newline
+ \STATE $ k \leftarrow k + 1 $ \hfill $ //résultat : k = 7$
+ \newline
+
+ \STATE {//Huitième itération :}
+ \STATE{//Calcul du gradient de $ J $ :}
+ \STATE $ \nabla J(x_k,y_k,z_k) = (2x_k,2y_k,2z_k)$ \hfill $ //résultat : (1.5625, 1.5625, 0) $
+ \newline
+ \STATE {//Calcul du gradient de $ L $ : }
+ \STATE $\nabla L((x_k,y_k,z_k),(\lambda_1,\lambda_2)) = \nabla J(x_k,y_k,z_k) + \lambda_1 \nabla g_1(x_k,y_k,z_k) + \lambda_2 \nabla g_2(x_k,y_k,z_k)) $ \hfill $ //résultat : (6*0.78125, 4*0.78125, 0)$
+ \STATE $ \varepsilon_k = \norme{\nabla L((x_k,y_k,z_k),(\lambda_1,\lambda_2))}$
+ \newline
+ \STATE {//Calcul de la direction de la pente $ d_k $ (méthode de Newton) :}
+ \STATE $ d_k = -H[J](x_k,y_k,z_k)^{-1} * \nabla J(x_k,y_k,z_k) $ \hfill $ //résultat : (-(0.390625,0.390625,0))$
+ \newline
+ \STATE {//Calcul des nouvelles valeurs des coordonnées}
+ \STATE $ (x_{k+1},y_{k+1},z_{k+1}) = (x_k,y_k,z_k) + s_k d_k $ \hfill $ //résultat : (0.390625,0.390625,0)$
+ \newline
+ \STATE {//Incrémentation de $ k $}
+ \STATE $ k \leftarrow k + 1 $ \hfill $ //résulat : k = 8$
+ \newline
+
+ \STATE {//Neuvième itération :}
+ \STATE {//Calcul du gradient de $ J $ :}
+ \STATE $ \nabla J(x_k,y_k,z_k) = (2x_k,2y_k,2z_k)$ \hfill $ //résultat : (0.78125, 0.78125, 0) $
+ \newline
+ \STATE {//Calcul du gradient de $ L $ :}
+ \STATE $\nabla L((x_k,y_k,z_k),(\lambda_1,\lambda_2)) = \nabla J(x_k,y_k,z_k) + \lambda_1 \nabla g_1(x_k,y_k,z_k) + \lambda_2 \nabla g_2(x_k,y_k,z_k)) $ \hfill $ //résultat : (6*0.390625, 4*0.390625, 0)$
+ \STATE $ \varepsilon_k = \norme{\nabla L((x_k,y_k,z_k),(\lambda_1,\lambda_2))}$
+ \newline
+ \STATE {//Calcul de la direction de la pente $ d_k $ (méthode de Newton) :}
+ \STATE $ d_k = -H[J](x_k,y_k,z_k)^{-1} * \nabla J(x_k,y_k,z_k) $ \hfill $ //résultat : (-(0.1953125,0.1953125,0))$
+ \newline
+ \STATE {//Calcul des nouvelles valeurs des coordonnées}
+ \STATE $ (x_{k+1},y_{k+1},z_{k+1}) = (x_k,y_k,z_k) + s_k d_k $ \hfill $ //résultat : (0.1953125,0.1953125,0)$
+ \newline
+ \STATE {//Incrémentation de $ k $}
+ \STATE $ k \leftarrow k + 1 \hfill //résultat : k = 9$
+ \newline
+
+ \STATE {//Dixième itération :}
+ \STATE {//Calcul du gradient de $ J $ :}
+ \STATE $ \nabla J(x_k,y_k,z_k) = (2x_k,2y_k,2z_k)$ \hfill $ //résultat : (0.390625, 0.390625, 0) $
+ \newline
+ \STATE {//Calcul du gradient de $ L $ :}
+ \STATE $\nabla L((x_k,y_k,z_k),(\lambda_1,\lambda_2)) = \nabla J(x_k,y_k,z_k) + \lambda_1 \nabla g_1(x_k,y_k,z_k) + \lambda_2 \nabla g_2(x_k,y_k,z_k)) $ \hfill $ //résultat : (6*0.1953125, 4*0.1953125, 0)$
+ \STATE $ \varepsilon_k = \norme{\nabla L((x_k,y_k,z_k),(\lambda_1,\lambda_2))}$
+ \newline
+ \STATE {//Calcul de la direction de la pente $ d_k $ (méthode de Newton) :}
+ \STATE $ d_k = -H[J](x_k,y_k,z_k)^{-1} * \nabla J(x_k,y_k,z_k) $ \hfill $ //résultat : (-(0.097665625,0.097665625,0))$
+ \newline
+ \STATE {//Calcul des nouvelles valeurs des coordonnées}
+ \STATE $ (x_{k+1},y_{k+1},z_{k+1}) = (x_k,y_k,z_k) + s_k d_k $ \hfill $ //résultat : (0.097665625,0.097665625,0)$
+ \newline
+ \STATE {//Incrémentation de $ k $}
+ \STATE $ k \leftarrow k + 1 $ \hfill $ //résultat : k = 10$
+ \newline
+ \STATE {//Fin de la boucle "while" car nous avons atteint $ k = 10 $, condition mettant fin à la //boucle}
+ \newline
+
+ \ENDWHILE
+
+\end{algorithmic}
\bibliographystyle{plain}
\bibliography{stdlib_sbphilo}