Reindent properly the code.
authorJérôme Benoit <jerome.benoit@piment-noir.org>
Sat, 1 Dec 2018 14:34:57 +0000 (15:34 +0100)
committerJérôme Benoit <jerome.benoit@piment-noir.org>
Sat, 1 Dec 2018 14:34:57 +0000 (15:34 +0100)
Signed-off-by: Jérôme Benoit <jerome.benoit@piment-noir.org>
rapport/ProjetOptimRO.tex

index 8919c6d6df0e5b0a2d1c95b306983bd545bf3d6b..de81c13eb95be8ab099d649b40388eb392c462cb 100644 (file)
@@ -777,7 +777,7 @@ Dans les deux cas, les équations de quasi-Newton forment un système sous-déte
 Une stratégie commune est de calculer $ (x_{k+1},\lambda_{k+1},\mu_{k+1}) $ pour une matrice $ H_k $ donnée et faire une mise à jour de $ H_k $ de rang 1 ou 2 :
 $$ H_{k+1} = H_k + U_k $$
 % \subsubsection{Mises à jour DFP et BFGS}
-Les méthodes de mise à jour DFP et BFGS suivent par exemple cette stratégie.
+Les méthodes de mises à jour DFP et BFGS suivent par exemple cette stratégie.
 
 \subsection{Exemple d'utilisation de PQS}
 
@@ -845,217 +845,213 @@ $ L((100,100,0),(1,1)) = 4800. $
 \newline
 \newfloat{algorithm}{t}
 
-%\begin{algorithm}
- \begin{algorithmic}
-  \REQUIRE $(x_0,y_0,z_0) = (100, 100 ,0), g(x_0,y_0,z_0) \leq 0$
-  \ENSURE $\displaystyle\min_{(x,y,z) \in \mathbb{R}^3} J(x,y,z) = x^2 + y^2 + z^2 -r^2$ and \newline $g(x,y,z) = (g_1(x,y,z), g_2(x,y,z)) = (x^2 + y^2 - r_1^2, x^2 + z^2 -r_2^2) \leq 0 $
-  \STATE \textbf{Data :}
-  \STATE $k \leftarrow 0, (x_k, y_k, z_k) \leftarrow (100, 100, 0), r \leftarrow 100$
-  \STATE $r_1 = r_2 \leftarrow 10, \varepsilon \leftarrow 0.01$
-  \STATE $\lambda_1 = \lambda_2 \leftarrow 1$
-  \STATE $s_k \leftarrow \frac{1}{2}$
-  \STATE $ H[J](x,y,z)^{-1} \leftarrow
-   \begin{pmatrix}
-    0.5 & 0   & 0   \\
-    0   & 0.5 & 0   \\
-    0   & 0   & 0.5 \\
-   \end{pmatrix} $
-  \newline
-
-  \WHILE{$ (\norme{\nabla L(x_k,\lambda_k,\mu_k)} > \varepsilon $ or k $ \leq 10)$}
-
-      \STATE {//Première itération :}
-      \STATE {//Calcul du gradient de $ J $ :}
-      \STATE $ \nabla J(x_k,y_k,z_k) = (2x_k,2y_k,2z_k)$ \hfill $ //résultat : (200,200,0) $
-      \newline
-      % \STATE {//Calcul des deux composantes du gradient de $ g $:}
-      % \STATE $ \nabla g_1(x_k,y_k,z_k) = (2x_k,2y_k,0)$ \hfill $ //résultat : (200, 200, 0)$
-      % \STATE $ \nabla g_2(x_k,y_k,z_k) = (2x_k,0,2z_k)$ \hfill $ //résultat : (200, 0, 0)$
-      % \STATE $ \nabla g(x_k,y_k,z_k) = (\nabla g_1(x_k,y_k,z_k), \nabla g_2(x_k,y_k,z_k))$
-      % \newline
-      \STATE {//Calcul du gradient de $ L $ :}
-      \STATE $\nabla L((x_k,y_k,z_k),(\lambda_1,\lambda_2)) = \nabla J(x_k,y_k,z_k) + \lambda_1 \nabla g_1(x_k,y_k,z_k) + \lambda_2 \nabla g_2(x_k,y_k,z_k)) $ \hfill $//résultat : (600, 400, 0)$
-      \STATE $ \varepsilon_k = \norme{\nabla L((x_k,y_k,z_k),(\lambda_1,\lambda_2))}$
-      % \STATE $ \nabla L((x_k,y_k,z_k),(\lambda_1,\lambda_2)) = (x_L , y_L, z_L) $
-      \newline
-      \STATE {//Calcul de la direction de la pente $ d_k $ (méthode de Newton) :}
-      \STATE $ d_k = -H[J](x_k,y_k,z_k)^{-1} * \nabla J(x_k,y_k,z_k)$ \hfill $ //résultat : (-(100,100,0))$
-      \newline
-      \STATE {//Calcul des nouvelles valeurs des coordonnées}
-      \STATE $ (x_{k+1},y_{k+1},z_{k+1}) = (x_k,y_k,z_k) + s_k d_k $ \hfill $ //résultat : (50,50,0)$
-      \newline
-      \STATE {//Incrémentation de $ k $}
-      \STATE $ k \leftarrow k + 1$ \hfill $ //résultat : k = 1$
-      \newline
-
-      \STATE {//Deuxième itération :}
-      \STATE {//Calcul du gradient de $ J $ :}
-      \STATE $ \nabla J(x_k,y_k,z_k) = (2x_k,2y_k,2z_k)$ \hfill $ //résultat : (100,100,0) $
-      \newline
-      \STATE {//Calcul du gradient de $ L $ :}
-      \STATE $\nabla L((x_k,y_k,z_k),(\lambda_1,\lambda_2)) = \nabla J(x_k,y_k,z_k) + \lambda_1 \nabla g_1(x_k,y_k,z_k) + \lambda_2 \nabla g_2(x_k,y_k,z_k)) $ \hfill $//résultat : (6*50, 4*50, 0)$
-      \STATE $ \varepsilon_k = \norme{\nabla L((x_k,y_k,z_k),(\lambda_1,\lambda_2))}$
-      \newline
-      \STATE {//Calcul de la direction de la pente $ d_k $ (méthode de Newton) :}
-      \STATE $ d_k = -H[J](x_k,y_k,z_k)^{-1} * \nabla J(x_k,y_k,z_k)$ \hfill $ //résultat : (-(50,50,0))$
-      \STATE {//Calcul des nouvelles valeurs des coordonnées}
-      \STATE $ (x_{k+1},y_{k+1},z_{k+1}) = (x_k,y_k,z_k) + s_k d_k $ \hfill $ //résultat : (25,25,0)$
-      \newline
-      \STATE {//Incrémentation de $ k $ }
-      \STATE $ k \leftarrow k + 1$ \hfill $ //résultat : k = 2$
-      \newline
-
-      \STATE {//Troisième itération :}
-      \STATE {//Calcul du gradient de $ J $:}
-      \STATE $ \nabla J(x_k,y_k,z_k) = (2x_k,2y_k,2z_k)$ \hfill $ //résultat : (50,50,0) $
-      \newline
-      \STATE {//Calcul du gradient de $ L $ :}
-      \STATE $\nabla L((x_k,y_k,z_k),(\lambda_1,\lambda_2)) = \nabla J(x_k,y_k,z_k) + \lambda_1 \nabla g_1(x_k,y_k,z_k) + \lambda_2 \nabla g_2(x_k,y_k,z_k)) $ \hfill $//résultat : (6*25, 4*25, 0)$
-      \STATE $ \varepsilon_k = \norme{\nabla L((x_k,y_k,z_k),(\lambda_1,\lambda_2))}$
-      \newline
-      \STATE {//Calcul de la direction de la pente $ d_k $ (méthode de Newton) :}
-      \STATE $ d_k = -H[J](x,y,z)^{-1} * \nabla J(x_k,y_k,z_k)$ \hfill $ //résultat : (-(25,25,0))$
-      \STATE {//Calcul des nouvelles valeurs des coordonnées}
-      \newline
-      \STATE $ (x_{k+1},y_{k+1},z_{k+1}) = (x_k,y_k,z_k) + s_k d_k $ \hfill $ //résultat : (12.5,12.5,0)$
-      \STATE {//Incrémentation de $ k $}
-      \STATE $ k \leftarrow k + 1$ \hfill $ //résultat : k = 3$
-      \newline
-
-      \STATE {//Quatrième itération :}
-      \STATE {//Calcul du gradient de $ J $ :}
-      \STATE $ \nabla J(x_k,y_k,z_k) = (2x_k,2y_k,2z_k)$ \hfill $ //résultat : (25,25,0) $
-      \newline
-      \STATE {//Calcul du gradient de $ L $ :}
-      \STATE $\nabla L((x_k,y_k,z_k),(\lambda_1,\lambda_2)) = \nabla J(x_k,y_k,z_k) + \lambda_1 \nabla g_1(x_k,y_k,z_k) + \lambda_2 \nabla g_2(x_k,y_k,z_k)) $ \hfill $//résultat : (6*12.5, 4*12.5, 0)$
-      \STATE $ \varepsilon_k = \norme{\nabla L((x_k,y_k,z_k),(\lambda_1,\lambda_2))}$
-      \newline
-      \STATE {//Calcul de la direction de la pente $ d_k $ (méthode de Newton) :}
-      \STATE $ d_k = -H[J](x_k,y_k,z_k)^{-1} * \nabla J(x_k,y_k,z_k)$ \hfill $ //résultat : (-(12.5,12.5,0))$
-      \newline
-      \STATE {//Calcul des nouvelles valeurs des coordonnées}
-      \STATE $ (x_{k+1},y_{k+1},z_{k+1}) = (x_k,y_k,z_k) + s_k d_k $ \hfill $ //résultat : (6.25,6.25,0)$
-      \STATE {//Incrémentation de $ k $}
-      \newline
-      \STATE $ k \leftarrow k + 1$ \hfill $ //résultat : k = 4$
-      \newline
-
-      \STATE {//Cinquième itération :}
-      \STATE {//Calcul du gradient de $ J $ :}
-      \STATE $ \nabla J(x_k,y_k,z_k) = (2x_k,2y_k,2z_k)$ \hfill $ //résultat : (12.5,12.5,0) $
-      \newline
-      \STATE {//Calcul du gradient de $ L $ :}
-      \STATE $\nabla L((x_k,y_k,z_k),(\lambda_1,\lambda_2)) = \nabla J(x_k,y_k,z_k) + \lambda_1 \nabla g_1(x_k,y_k,z_k) + \lambda_2 \nabla g_2(x_k,y_k,z_k)) $ \hfill $//résultat : (6*6.25, 4*6.25, 0)$
-      \STATE $ \varepsilon_k = \norme{\nabla L((x_k,y_k,z_k),(\lambda_1,\lambda_2))}$
-      \newline
-      \STATE {//Calcul de la direction de la pente $ d_k $ (méthode de Newton) :}
-      \STATE $ d_k = -H[J](x_k,y_k,z_k)^{-1} * \nabla J(x_k,y_k,z_k)$ \hfill $ //résultat : (-(6.25,6.25,0))$
-      \newline
-      \STATE {//Calcul des nouvelles valeurs des coordonnées}
-      \STATE $ (x_{k+1},y_{k+1},z_{k+1}) = (x_k,y_k,z_k) + s_k d_k $ \hfill $ //résultat : (3.125,3.125,0)$
-      \newline
-      \STATE {//Incrémentation de $ k $}
-      \STATE $ k \leftarrow k + 1$ \hfill $ //résultat : k = 5$
-      \newline
-
-      \STATE {//Sixième itération :}
-      \STATE {//Calcul du gradient de $ J $ :}
-      \STATE $ \nabla J(x_k,y_k,z_k) = (2x_k,2y_k,2z_k)$ \hfill $ //résultat : (6.25,6.25,0) $
-      \newline
-      \STATE {//Calcul du gradient de $ L $ :}
-      \STATE $\nabla L((x_k,y_k,z_k),(\lambda_1,\lambda_2)) = \nabla J(x_k,y_k,z_k) + \lambda_1 \nabla g_1(x_k,y_k,z_k) + \lambda_2 \nabla g_2(x_k,y_k,z_k)) $ \hfill $//résultat : (6*3.125, 4*3.125, 0)$
-      \STATE $ \varepsilon_k = \norme{\nabla L((x_k,y_k,z_k),(\lambda_1,\lambda_2))}$
-      \newline
-      \STATE {//Calcul de la direction de la pente $ d_k $ (méthode de Newton) :}
-      \STATE $ d_k = -H[J](x_k,y_k,z_k)^{-1} * \nabla J(x_k,y_k,z_k)$ \hfill $ //résultat : (-(1.5625,1.5625,0))$
-      \STATE {//Calcul des nouvelles valeurs des coordonnées}
-      \newline
-      \STATE $ (x_{k+1},y_{k+1},z_{k+1}) = (x_k,y_k,z_k) + s_k d_k $ \hfill $ //résultat : (1.5625,1.5625,0)$
-      \STATE {//Incrémentation de $ k $}
-      \newline
-      \STATE $ k \leftarrow k + 1$ \hfill $ //résultat : k = 6$
-      \newline
-
-      \STATE {//Septième itération :}
-      \STATE {//Calcul du gradient de $ J $ :}
-      \STATE $ \nabla J(x_k,y_k,z_k) = (2x_k,2y_k,2z_k)$ \hfill $ //résultat : (3.125, 3.125, 0) $
-      \newline
-      \STATE {//Calcul du gradient de $ L $ : }
-      \STATE $\nabla L((x_k,y_k,z_k),(\lambda_1,\lambda_2)) = \nabla J(x_k,y_k,z_k) + \lambda_1 \nabla g_1(x_k,y_k,z_k) + \lambda_2 \nabla g_2(x_k,y_k,z_k)) $ \hfill $//résultat : (6*1.5625, 4*1.5625, 0)$
-      \STATE $ \varepsilon_k = \norme{\nabla L((x_k,y_k,z_k),(\lambda_1,\lambda_2))}$
-      \newline
-      \STATE {//Calcul de la direction de la pente $ d_k $ (méthode de Newton) :}
-      \STATE $ d_k = -H[J](x_k,y_k,z_k)^{-1} * \nabla J(x_k,y_k,z_k)$ \hfill $ //résultat : (-(0.78125,0.78125,0))$
-      \STATE {//Calcul des nouvelles valeurs des coordonnées}
-      \newline
-      \STATE $ (x_{k+1},y_{k+1},z_{k+1}) = (x_k,y_k,z_k) + s_k d_k $ \hfill $ //résultat : (0.78125,0.78125,0)$
-      \STATE {//Incrémentation de $ k $}
-      \newline
-      \STATE $ k \leftarrow k + 1$ \hfill $ //résultat : k = 7$
-      \newline
-
-      \STATE {//Huitième itération :}
-      \STATE{//Calcul du gradient de $ J $ :}
-      \STATE $ \nabla J(x_k,y_k,z_k) = (2x_k,2y_k,2z_k)$ \hfill $ //résultat : (1.5625, 1.5625, 0) $
-      \newline
-      \STATE {//Calcul du gradient de $ L $ : }
-      \STATE $\nabla L((x_k,y_k,z_k),(\lambda_1,\lambda_2)) = \nabla J(x_k,y_k,z_k) + \lambda_1 \nabla g_1(x_k,y_k,z_k) + \lambda_2 \nabla g_2(x_k,y_k,z_k)) $ \hfill $//résultat : (6*0.78125, 4*0.78125, 0)$
-      \STATE $ \varepsilon_k = \norme{\nabla L((x_k,y_k,z_k),(\lambda_1,\lambda_2))}$
-      \newline
-      \STATE {//Calcul de la direction de la pente $ d_k $ (méthode de Newton) :}
-      \STATE $ d_k = -H[J](x_k,y_k,z_k)^{-1} * \nabla J(x_k,y_k,z_k)$ \hfill $ //résultat : (-(0.390625,0.390625,0))$
-      \newline
-      \STATE {//Calcul des nouvelles valeurs des coordonnées}
-      \STATE $ (x_{k+1},y_{k+1},z_{k+1}) = (x_k,y_k,z_k) + s_k d_k $ \hfill $ //résultat : (0.390625,0.390625,0)$
-      \newline
-      \STATE {//Incrémentation de $ k $}
-      \STATE $ k \leftarrow k + 1$ \hfill $ //résulat : k = 8$
-      \newline
-
-      \STATE {//Neuvième itération :}
-      \STATE {//Calcul du gradient de $ J $ :}
-      \STATE $ \nabla J(x_k,y_k,z_k) = (2x_k,2y_k,2z_k)$ \hfill $ //résultat : (0.78125, 0.78125, 0) $
-      \newline
-      \STATE {//Calcul du gradient de $ L $ :}
-      \STATE $\nabla L((x_k,y_k,z_k),(\lambda_1,\lambda_2)) = \nabla J(x_k,y_k,z_k) + \lambda_1 \nabla g_1(x_k,y_k,z_k) + \lambda_2 \nabla g_2(x_k,y_k,z_k)) $ \hfill $//résultat : (6*0.390625, 4*0.390625, 0)$
-      \STATE $ \varepsilon_k = \norme{\nabla L((x_k,y_k,z_k),(\lambda_1,\lambda_2))}$
-      \newline
-      \STATE {//Calcul de la direction de la pente $ d_k $ (méthode de Newton) :}
-      \STATE $ d_k = -H[J](x_k,y_k,z_k)^{-1} * \nabla J(x_k,y_k,z_k)$ \hfill $ //résultat : (-(0.1953125,0.1953125,0))$
-      \newline
-      \STATE {//Calcul des nouvelles valeurs des coordonnées}
-      \STATE $ (x_{k+1},y_{k+1},z_{k+1}) = (x_k,y_k,z_k) + s_k d_k $ \hfill $ //résultat : (0.1953125,0.1953125,0)$
-      \newline
-      \STATE {//Incrémentation de $ k $}
-      \STATE $ k \leftarrow k + 1 \hfill //résultat : k = 9$
-      \newline
-
-      \STATE {//Dixième itération :}
-      \STATE {//Calcul du gradient de $ J $ :}
-      \STATE $ \nabla J(x_k,y_k,z_k) = (2x_k,2y_k,2z_k)$ \hfill $ //résultat : (0.390625, 0.390625, 0) $
-      \newline
-      \STATE {//Calcul du gradient de $ L $ :}
-      \STATE $\nabla L((x_k,y_k,z_k),(\lambda_1,\lambda_2)) = \nabla J(x_k,y_k,z_k) + \lambda_1 \nabla g_1(x_k,y_k,z_k) + \lambda_2 \nabla g_2(x_k,y_k,z_k)) $ \hfill $//résultat : (6*0.1953125, 4*0.1953125, 0)$
-      \STATE $ \varepsilon_k = \norme{\nabla L((x_k,y_k,z_k),(\lambda_1,\lambda_2))}$
-      \newline
-      \STATE {//Calcul de la direction de la pente $ d_k $ (méthode de Newton) :}
-      \STATE $ d_k = -H[J](x_k,y_k,z_k)^{-1} * \nabla J(x_k,y_k,z_k)$ \hfill $ //résultat : (-(0.097665625,0.097665625,0))$
-      \newline
-      \STATE {//Calcul des nouvelles valeurs des coordonnées}
-      \STATE $ (x_{k+1},y_{k+1},z_{k+1}) = (x_k,y_k,z_k) + s_k d_k $ \hfill $ //résultat : (0.097665625,0.097665625,0)$
-      \newline
-      \STATE {//Incrémentation de $ k $}
-      \STATE $ k \leftarrow k + 1$ \hfill $ //résultat : k = 10$
-      \newline
-      \STATE {//Fin de la boucle "while" car nous avons atteint $ k = 10 $, condition mettant fin à la //boucle}
-      \newline
-
-  \ENDWHILE
-
-
- \end{algorithmic}
-%\end{floatalgo}
- %\end{algorithm}
+\begin{algorithmic}
+ \REQUIRE $(x_0,y_0,z_0) = (100, 100 ,0), g(x_0,y_0,z_0) \leq 0$
+ \ENSURE $\displaystyle\min_{(x,y,z) \in \mathbb{R}^3} J(x,y,z) = x^2 + y^2 + z^2 -r^2$ and \newline $g(x,y,z) = (g_1(x,y,z), g_2(x,y,z)) = (x^2 + y^2 - r_1^2, x^2 + z^2 -r_2^2) \leq 0$
+ \STATE \textbf{Data :}
+ \STATE $k \leftarrow 0, (x_k, y_k, z_k) \leftarrow (100, 100, 0), r \leftarrow 100$
+ \STATE $r_1 = r_2 \leftarrow 10, \varepsilon \leftarrow 0.01$
+ \STATE $\lambda_1 = \lambda_2 \leftarrow 1$
+ \STATE $s_k \leftarrow \frac{1}{2}$
+ \STATE $ H[J](x,y,z)^{-1} \leftarrow
+  \begin{pmatrix}
+   0.5 & 0   & 0   \\
+   0   & 0.5 & 0   \\
+   0   & 0   & 0.5 \\
+  \end{pmatrix} $
+ \newline
+
+ \WHILE{$ (\norme{\nabla L(x_k,\lambda_k,\mu_k)} > \varepsilon $ or k $ \leq 10)$}
+
+ \STATE {//Première itération :}
+ \STATE {//Calcul du gradient de $ J $ :}
+ \STATE $ \nabla J(x_k,y_k,z_k) = (2x_k,2y_k,2z_k)$ \hfill $ //résultat : (200,200,0) $
+ \newline
+ % \STATE {//Calcul des deux composantes du gradient de $ g $:}
+ % \STATE $ \nabla g_1(x_k,y_k,z_k) = (2x_k,2y_k,0)$ \hfill $ //résultat : (200, 200, 0)$
+ % \STATE $ \nabla g_2(x_k,y_k,z_k) = (2x_k,0,2z_k)$ \hfill $ //résultat : (200, 0, 0)$
+ % \STATE $ \nabla g(x_k,y_k,z_k) = (\nabla g_1(x_k,y_k,z_k), \nabla g_2(x_k,y_k,z_k))$
+ % \newline
+ \STATE {//Calcul du gradient de $ L $ :}
+ \STATE $\nabla L((x_k,y_k,z_k),(\lambda_1,\lambda_2)) = \nabla J(x_k,y_k,z_k) + \lambda_1 \nabla g_1(x_k,y_k,z_k) + \lambda_2 \nabla g_2(x_k,y_k,z_k)) $ \hfill $ //résultat : (600, 400, 0)$
+ \STATE $ \varepsilon_k = \norme{\nabla L((x_k,y_k,z_k),(\lambda_1,\lambda_2))}$
+ % \STATE $ \nabla L((x_k,y_k,z_k),(\lambda_1,\lambda_2)) = (x_L , y_L, z_L) $
+ \newline
+ \STATE {//Calcul de la direction de la pente $ d_k $ (méthode de Newton) :}
+ \STATE $ d_k = -H[J](x_k,y_k,z_k)^{-1} * \nabla J(x_k,y_k,z_k) $ \hfill $ //résultat : (-(100,100,0))$
+ \newline
+ \STATE {//Calcul des nouvelles valeurs des coordonnées}
+ \STATE $ (x_{k+1},y_{k+1},z_{k+1}) = (x_k,y_k,z_k) + s_k d_k $ \hfill $ //résultat : (50,50,0)$
+ \newline
+ \STATE {//Incrémentation de $ k $}
+ \STATE $ k \leftarrow k + 1 $ \hfill $ //résultat : k = 1$
+ \newline
+
+ \STATE {//Deuxième itération :}
+ \STATE {//Calcul du gradient de $ J $ :}
+ \STATE $ \nabla J(x_k,y_k,z_k) = (2x_k,2y_k,2z_k)$ \hfill $ //résultat : (100,100,0) $
+ \newline
+ \STATE {//Calcul du gradient de $ L $ :}
+ \STATE $\nabla L((x_k,y_k,z_k),(\lambda_1,\lambda_2)) = \nabla J(x_k,y_k,z_k) + \lambda_1 \nabla g_1(x_k,y_k,z_k) + \lambda_2 \nabla g_2(x_k,y_k,z_k)) $ \hfill $ //résultat : (6*50, 4*50, 0)$
+ \STATE $ \varepsilon_k = \norme{\nabla L((x_k,y_k,z_k),(\lambda_1,\lambda_2))}$
+ \newline
+ \STATE {//Calcul de la direction de la pente $ d_k $ (méthode de Newton) :}
+ \STATE $ d_k = -H[J](x_k,y_k,z_k)^{-1} * \nabla J(x_k,y_k,z_k) $ \hfill $ //résultat : (-(50,50,0))$
+ \STATE {//Calcul des nouvelles valeurs des coordonnées}
+ \STATE $ (x_{k+1},y_{k+1},z_{k+1}) = (x_k,y_k,z_k) + s_k d_k $ \hfill $ //résultat : (25,25,0)$
+ \newline
+ \STATE {//Incrémentation de $ k $ }
+ \STATE $ k \leftarrow k + 1 $ \hfill $ //résultat : k = 2$
+ \newline
+
+ \STATE {//Troisième itération :}
+ \STATE {//Calcul du gradient de $ J $:}
+ \STATE $ \nabla J(x_k,y_k,z_k) = (2x_k,2y_k,2z_k)$ \hfill $ //résultat : (50,50,0) $
+ \newline
+ \STATE {//Calcul du gradient de $ L $ :}
+ \STATE $\nabla L((x_k,y_k,z_k),(\lambda_1,\lambda_2)) = \nabla J(x_k,y_k,z_k) + \lambda_1 \nabla g_1(x_k,y_k,z_k) + \lambda_2 \nabla g_2(x_k,y_k,z_k)) $ \hfill $ //résultat : (6*25, 4*25, 0)$
+ \STATE $ \varepsilon_k = \norme{\nabla L((x_k,y_k,z_k),(\lambda_1,\lambda_2))}$
+ \newline
+ \STATE {//Calcul de la direction de la pente $ d_k $ (méthode de Newton) :}
+ \STATE $ d_k = -H[J](x,y,z)^{-1} * \nabla J(x_k,y_k,z_k) $ \hfill $ //résultat : (-(25,25,0))$
+ \STATE {//Calcul des nouvelles valeurs des coordonnées}
+ \newline
+ \STATE $ (x_{k+1},y_{k+1},z_{k+1}) = (x_k,y_k,z_k) + s_k d_k $ \hfill $ //résultat : (12.5,12.5,0)$
+ \STATE {//Incrémentation de $ k $}
+ \STATE $ k \leftarrow k + 1 $ \hfill $ //résultat : k = 3$
+ \newline
+
+ \STATE {//Quatrième itération :}
+ \STATE {//Calcul du gradient de $ J $ :}
+ \STATE $ \nabla J(x_k,y_k,z_k) = (2x_k,2y_k,2z_k)$ \hfill $ //résultat : (25,25,0) $
+ \newline
+ \STATE {//Calcul du gradient de $ L $ :}
+ \STATE $\nabla L((x_k,y_k,z_k),(\lambda_1,\lambda_2)) = \nabla J(x_k,y_k,z_k) + \lambda_1 \nabla g_1(x_k,y_k,z_k) + \lambda_2 \nabla g_2(x_k,y_k,z_k)) $ \hfill $ //résultat : (6*12.5, 4*12.5, 0)$
+ \STATE $ \varepsilon_k = \norme{\nabla L((x_k,y_k,z_k),(\lambda_1,\lambda_2))}$
+ \newline
+ \STATE {//Calcul de la direction de la pente $ d_k $ (méthode de Newton) :}
+ \STATE $ d_k = -H[J](x_k,y_k,z_k)^{-1} * \nabla J(x_k,y_k,z_k) $ \hfill $ //résultat : (-(12.5,12.5,0))$
+ \newline
+ \STATE {//Calcul des nouvelles valeurs des coordonnées}
+ \STATE $ (x_{k+1},y_{k+1},z_{k+1}) = (x_k,y_k,z_k) + s_k d_k $ \hfill $ //résultat : (6.25,6.25,0)$
+ \STATE {//Incrémentation de $ k $}
+ \newline
+ \STATE $ k \leftarrow k + 1 $ \hfill $ //résultat : k = 4$
+ \newline
+
+ \STATE {//Cinquième itération :}
+ \STATE {//Calcul du gradient de $ J $ :}
+ \STATE $ \nabla J(x_k,y_k,z_k) = (2x_k,2y_k,2z_k)$ \hfill $ //résultat : (12.5,12.5,0) $
+ \newline
+ \STATE {//Calcul du gradient de $ L $ :}
+ \STATE $\nabla L((x_k,y_k,z_k),(\lambda_1,\lambda_2)) = \nabla J(x_k,y_k,z_k) + \lambda_1 \nabla g_1(x_k,y_k,z_k) + \lambda_2 \nabla g_2(x_k,y_k,z_k)) $ \hfill $ //résultat : (6*6.25, 4*6.25, 0)$
+ \STATE $ \varepsilon_k = \norme{\nabla L((x_k,y_k,z_k),(\lambda_1,\lambda_2))}$
+ \newline
+ \STATE {//Calcul de la direction de la pente $ d_k $ (méthode de Newton) :}
+ \STATE $ d_k = -H[J](x_k,y_k,z_k)^{-1} * \nabla J(x_k,y_k,z_k) $ \hfill $ //résultat : (-(6.25,6.25,0))$
+ \newline
+ \STATE {//Calcul des nouvelles valeurs des coordonnées}
+ \STATE $ (x_{k+1},y_{k+1},z_{k+1}) = (x_k,y_k,z_k) + s_k d_k $ \hfill $ //résultat : (3.125,3.125,0)$
+ \newline
+ \STATE {//Incrémentation de $ k $}
+ \STATE $ k \leftarrow k + 1 $ \hfill $ //résultat : k = 5$
+ \newline
+
+ \STATE {//Sixième itération :}
+ \STATE {//Calcul du gradient de $ J $ :}
+ \STATE $ \nabla J(x_k,y_k,z_k) = (2x_k,2y_k,2z_k)$ \hfill $ //résultat : (6.25,6.25,0) $
+ \newline
+ \STATE {//Calcul du gradient de $ L $ :}
+ \STATE $\nabla L((x_k,y_k,z_k),(\lambda_1,\lambda_2)) = \nabla J(x_k,y_k,z_k) + \lambda_1 \nabla g_1(x_k,y_k,z_k) + \lambda_2 \nabla g_2(x_k,y_k,z_k)) $ \hfill $ //résultat : (6*3.125, 4*3.125, 0)$
+ \STATE $ \varepsilon_k = \norme{\nabla L((x_k,y_k,z_k),(\lambda_1,\lambda_2))}$
+ \newline
+ \STATE {//Calcul de la direction de la pente $ d_k $ (méthode de Newton) :}
+ \STATE $ d_k = -H[J](x_k,y_k,z_k)^{-1} * \nabla J(x_k,y_k,z_k) $ \hfill $ //résultat : (-(1.5625,1.5625,0))$
+ \STATE {//Calcul des nouvelles valeurs des coordonnées}
+ \newline
+ \STATE $ (x_{k+1},y_{k+1},z_{k+1}) = (x_k,y_k,z_k) + s_k d_k $ \hfill $ //résultat : (1.5625,1.5625,0)$
+ \STATE {//Incrémentation de $ k $}
+ \newline
+ \STATE $ k \leftarrow k + 1 $ \hfill $ //résultat : k = 6$
+ \newline
+
+ \STATE {//Septième itération :}
+ \STATE {//Calcul du gradient de $ J $ :}
+ \STATE $ \nabla J(x_k,y_k,z_k) = (2x_k,2y_k,2z_k)$ \hfill $ //résultat : (3.125, 3.125, 0) $
+ \newline
+ \STATE {//Calcul du gradient de $ L $ : }
+ \STATE $\nabla L((x_k,y_k,z_k),(\lambda_1,\lambda_2)) = \nabla J(x_k,y_k,z_k) + \lambda_1 \nabla g_1(x_k,y_k,z_k) + \lambda_2 \nabla g_2(x_k,y_k,z_k)) $ \hfill $ //résultat : (6*1.5625, 4*1.5625, 0)$
+ \STATE $ \varepsilon_k = \norme{\nabla L((x_k,y_k,z_k),(\lambda_1,\lambda_2))}$
+ \newline
+ \STATE {//Calcul de la direction de la pente $ d_k $ (méthode de Newton) :}
+ \STATE $ d_k = -H[J](x_k,y_k,z_k)^{-1} * \nabla J(x_k,y_k,z_k) $ \hfill $ //résultat : (-(0.78125,0.78125,0))$
+ \STATE {//Calcul des nouvelles valeurs des coordonnées}
+ \newline
+ \STATE $ (x_{k+1},y_{k+1},z_{k+1}) = (x_k,y_k,z_k) + s_k d_k $ \hfill $ //résultat : (0.78125,0.78125,0)$
+ \STATE {//Incrémentation de $ k $}
+ \newline
+ \STATE $ k \leftarrow k + 1 $ \hfill $ //résultat : k = 7$
+ \newline
+
+ \STATE {//Huitième itération :}
+ \STATE{//Calcul du gradient de $ J $ :}
+ \STATE $ \nabla J(x_k,y_k,z_k) = (2x_k,2y_k,2z_k)$ \hfill $ //résultat : (1.5625, 1.5625, 0) $
+ \newline
+ \STATE {//Calcul du gradient de $ L $ : }
+ \STATE $\nabla L((x_k,y_k,z_k),(\lambda_1,\lambda_2)) = \nabla J(x_k,y_k,z_k) + \lambda_1 \nabla g_1(x_k,y_k,z_k) + \lambda_2 \nabla g_2(x_k,y_k,z_k)) $ \hfill $ //résultat : (6*0.78125, 4*0.78125, 0)$
+ \STATE $ \varepsilon_k = \norme{\nabla L((x_k,y_k,z_k),(\lambda_1,\lambda_2))}$
+ \newline
+ \STATE {//Calcul de la direction de la pente $ d_k $ (méthode de Newton) :}
+ \STATE $ d_k = -H[J](x_k,y_k,z_k)^{-1} * \nabla J(x_k,y_k,z_k) $ \hfill $ //résultat : (-(0.390625,0.390625,0))$
+ \newline
+ \STATE {//Calcul des nouvelles valeurs des coordonnées}
+ \STATE $ (x_{k+1},y_{k+1},z_{k+1}) = (x_k,y_k,z_k) + s_k d_k $ \hfill $ //résultat : (0.390625,0.390625,0)$
+ \newline
+ \STATE {//Incrémentation de $ k $}
+ \STATE $ k \leftarrow k + 1 $ \hfill $ //résulat : k = 8$
+ \newline
+
+ \STATE {//Neuvième itération :}
+ \STATE {//Calcul du gradient de $ J $ :}
+ \STATE $ \nabla J(x_k,y_k,z_k) = (2x_k,2y_k,2z_k)$ \hfill $ //résultat : (0.78125, 0.78125, 0) $
+ \newline
+ \STATE {//Calcul du gradient de $ L $ :}
+ \STATE $\nabla L((x_k,y_k,z_k),(\lambda_1,\lambda_2)) = \nabla J(x_k,y_k,z_k) + \lambda_1 \nabla g_1(x_k,y_k,z_k) + \lambda_2 \nabla g_2(x_k,y_k,z_k)) $ \hfill $ //résultat : (6*0.390625, 4*0.390625, 0)$
+ \STATE $ \varepsilon_k = \norme{\nabla L((x_k,y_k,z_k),(\lambda_1,\lambda_2))}$
+ \newline
+ \STATE {//Calcul de la direction de la pente $ d_k $ (méthode de Newton) :}
+ \STATE $ d_k = -H[J](x_k,y_k,z_k)^{-1} * \nabla J(x_k,y_k,z_k) $ \hfill $ //résultat : (-(0.1953125,0.1953125,0))$
+ \newline
+ \STATE {//Calcul des nouvelles valeurs des coordonnées}
+ \STATE $ (x_{k+1},y_{k+1},z_{k+1}) = (x_k,y_k,z_k) + s_k d_k $ \hfill $ //résultat : (0.1953125,0.1953125,0)$
+ \newline
+ \STATE {//Incrémentation de $ k $}
+ \STATE $ k \leftarrow k + 1 \hfill //résultat : k = 9$
+ \newline
+
+ \STATE {//Dixième itération :}
+ \STATE {//Calcul du gradient de $ J $ :}
+ \STATE $ \nabla J(x_k,y_k,z_k) = (2x_k,2y_k,2z_k)$ \hfill $ //résultat : (0.390625, 0.390625, 0) $
+ \newline
+ \STATE {//Calcul du gradient de $ L $ :}
+ \STATE $\nabla L((x_k,y_k,z_k),(\lambda_1,\lambda_2)) = \nabla J(x_k,y_k,z_k) + \lambda_1 \nabla g_1(x_k,y_k,z_k) + \lambda_2 \nabla g_2(x_k,y_k,z_k)) $ \hfill $ //résultat : (6*0.1953125, 4*0.1953125, 0)$
+ \STATE $ \varepsilon_k = \norme{\nabla L((x_k,y_k,z_k),(\lambda_1,\lambda_2))}$
+ \newline
+ \STATE {//Calcul de la direction de la pente $ d_k $ (méthode de Newton) :}
+ \STATE $ d_k = -H[J](x_k,y_k,z_k)^{-1} * \nabla J(x_k,y_k,z_k) $ \hfill $ //résultat : (-(0.097665625,0.097665625,0))$
+ \newline
+ \STATE {//Calcul des nouvelles valeurs des coordonnées}
+ \STATE $ (x_{k+1},y_{k+1},z_{k+1}) = (x_k,y_k,z_k) + s_k d_k $ \hfill $ //résultat : (0.097665625,0.097665625,0)$
+ \newline
+ \STATE {//Incrémentation de $ k $}
+ \STATE $ k \leftarrow k + 1 $ \hfill $ //résultat : k = 10$
+ \newline
+ \STATE {//Fin de la boucle "while" car nous avons atteint $ k = 10 $, condition mettant fin à la //boucle}
+ \newline
+
+ \ENDWHILE
+\end{algorithmic}
 
 \bibliographystyle{plain}
 \bibliography{stdlib_sbphilo}