]> Piment Noir Git Repositories - freqai-strategies.git/commitdiff
refactor(qav3): simplify model identifier fetching
authorJérôme Benoit <jerome.benoit@piment-noir.org>
Sun, 2 Mar 2025 12:04:55 +0000 (13:04 +0100)
committerJérôme Benoit <jerome.benoit@piment-noir.org>
Sun, 2 Mar 2025 12:04:55 +0000 (13:04 +0100)
Signed-off-by: Jérôme Benoit <jerome.benoit@piment-noir.org>
ReforceXY/user_data/freqaimodels/ReforceXY.py
quickadapter/user_data/freqaimodels/LightGBMRegressorQuickAdapterV35.py
quickadapter/user_data/freqaimodels/XGBoostRegressorQuickAdapterV35.py

index d5a66ad129c13125acf66626bb5ce7dfa2963174..f4a33b0275aa2ad0a18d07d73d5779ca282b07b2 100644 (file)
@@ -483,7 +483,7 @@ class ReforceXY(BaseReinforcementLearningModel):
         Runs hyperparameter optimization using Optuna and
         returns the best hyperparameters found merged with the user defined parameters
         """
-        _, identifier = str(self.full_path).rsplit("/", 1)
+        identifier = self.freqai_info.get("identifier")
         if self.rl_config_optuna.get("per_pair", False):
             study_name = f"{identifier}-{dk.pair}"
             storage = self.get_storage(dk.pair)
index 1c4a1563775e55ddafde3fbc23f82af42f6b3faa..bfbcd5bb6afbec008fe64c9ddddabe1a8cc1105c 100644 (file)
@@ -310,7 +310,7 @@ class LightGBMRegressorQuickAdapterV35(BaseRegressionModel):
         y_test,
         test_weights,
     ) -> tuple[Dict, float] | tuple[None, None]:
-        _, identifier = str(self.full_path).rsplit("/", 1)
+        identifier = self.freqai_info.get("identifier")
         study_namespace = "hp"
         study_name = f"{identifier}-{study_namespace}-{pair}"
         storage = self.optuna_storage(pair)
@@ -386,7 +386,7 @@ class LightGBMRegressorQuickAdapterV35(BaseRegressionModel):
         test_weights,
         model_training_parameters,
     ) -> tuple[Dict, float] | tuple[None, None]:
-        _, identifier = str(self.full_path).rsplit("/", 1)
+        identifier = self.freqai_info.get("identifier")
         study_namespace = "period"
         study_name = f"{identifier}-{study_namespace}-{pair}"
         storage = self.optuna_storage(pair)
index ad7c646bcc61ed8494027d5655097e2c2fb31cad..9312bdf4e58e87d211e1abfe5d57794fcc6137b2 100644 (file)
@@ -311,7 +311,7 @@ class XGBoostRegressorQuickAdapterV35(BaseRegressionModel):
         y_test,
         test_weights,
     ) -> tuple[Dict, float] | tuple[None, None]:
-        _, identifier = str(self.full_path).rsplit("/", 1)
+        identifier = self.freqai_info.get("identifier")
         study_namespace = "hp"
         study_name = f"{identifier}-{study_namespace}-{pair}"
         storage = self.optuna_storage(pair)
@@ -387,7 +387,7 @@ class XGBoostRegressorQuickAdapterV35(BaseRegressionModel):
         test_weights,
         model_training_parameters,
     ) -> tuple[Dict, float] | tuple[None, None]:
-        _, identifier = str(self.full_path).rsplit("/", 1)
+        identifier = self.freqai_info.get("identifier")
         study_namespace = "period"
         study_name = f"{identifier}-{study_namespace}-{pair}"
         storage = self.optuna_storage(pair)